Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 106103    DOI: 10.1088/1674-1056/abad1e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy

Li-Jun Xu(徐丽君)1,2, Peng-Fei Zhai(翟鹏飞)1,2,†, Sheng-Xia Zhang(张胜霞)1, Jian Zeng(曾健)1,2, Pei-Pei Hu(胡培培)1, Zong-Zhen Li(李宗臻)1,2, Li Liu(刘丽)1,2, You-Mei Sun(孙友梅)1,2, and Jie Liu(刘杰)1,2,
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.

Keywords:  ion track      MoS2      transmission electron microscopy (TEM)      recrystallization  
Received:  27 April 2020      Revised:  06 August 2020      Accepted manuscript online:  07 August 2020
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.-d (Radiation effects on specific materials)  
  68.37.Lp (Transmission electron microscopy (TEM))  
Corresponding Authors:  Corresponding author. E-mail: zhaipengfei@impcas.ac.cn Corresponding author. E-mail: j.liu@impcas.ac.cn   
About author: 
†Corresponding author. E-mail: zhaipengfei@impcas.ac.cn
‡Corresponding author. E-mail: j.liu@impcas.ac.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11675233, 11690041, 11405229, 11705246, and 11505243), Chinese Academy of Sciences “Light of West China” Program, and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020412).

Cite this article: 

Li-Jun Xu(徐丽君), Peng-Fei Zhai(翟鹏飞)†, Sheng-Xia Zhang(张胜霞), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Zong-Zhen Li(李宗臻), Li Liu(刘丽), You-Mei Sun(孙友梅), and Jie Liu(刘杰)‡ Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy 2020 Chin. Phys. B 29 106103

Fig. 1.  

A sketch map of experiment process.

Ion Energy/MeV (dE / x)e/(keV/nm) (dE/dx)n/(keV/nm) Range/μm Fluence/(ions/cm2)
86Kr 2029.4 7.7 3.9×10−3 193.6 5×1010
86Kr 1795.3 8.2 4.4×10−3 164.0 5×1010
86Kr 1503.4 9.1 5.1×10−3 130.2 5×1010
129Xe 2047.5 18.9 1.2×10−2 96.8 5×1012
181Ta 1785.7 28.8 3.2×10−2 65.8 5×1010
209Bi 1390.0 35.2 5.7×10−2 46.8 5×1011
Table 1.  

Irradiation parameters for MoS2.

Fig. 2.  

Plan-view TEM images of MoS2 after swift heavy ion irradiation with (a), (b) 129Xe 5×1012 ions/cm2, (c), (d) 181Ta 5×1010 ions/cm2, and (e), (f) 209Bi 5×1011 ions/cm2. The left and right rows are the phase contrast images obtained at under-focus and over-focus conditions, respectively.

Fig. 3.  

Statistical diameter distribution of ion tracks in irradiated MoS2 with different electronic energy losses. The average diameters of the ion tracks (Da) are fitted according to Gaussian curve.

Fig. 4.  

TEM images of different ion track morphologies of MoS2 irradiated at 30° with 1785.7 MeV 181Ta ions. (a) Nearly cylindrical ion tracks consist of two spherical hillocks at each end. (b) Sandglass-like ion tracks. The apparent length in MoS2 sample is about 180 nm. (c) The q-tips-like ion tracks. The size of hillocks increases with increasing apparent length.

Fig. 5.  

Schematics of the formation process of ion track in irradiated MoS2 with SHIs. (a) SHIs bombardment. (b) Target material melting along the ion path. (c) Outflow of molten phase towards the free surface. (d) Recrystallization in ion damage zone.

Morphology Lap/nm Lac/nm Dh/nm
cylinders 30.5±1.0 35.2±1.2 4.0±0.2
sunglass 180.3±1.1 208.2±1.3 16.6±0.7
q-tips 187.4±1.4 216.4±1.6 20.6±1.1
Table 2.  

Track related parameters of MoS2 with different morphologies. Morphology, hillock diameter (Dh), apparent track length (Lap), and actual track length (Lac) were obtained from TEM measurements in Fig. 3.

[1]
Dufour Ch, Audouard A, Beneu F, Dural J, Girard J P, Hairie A, Levalois M, Paumier E, Toulemonde M 1993 J. Phys.: Condens. Matter 5 4573 DOI: 10.1088/0953-8984/5/26/027
[2]
Heiranian M, Farimani A B, Aluru N R 2015 Nat. Commun. 6 8616 DOI: 10.1038/ncomms9616
[3]
Zollondz J H, Weidinger A 2004 Nucl. Instrum. Methods Phys. Res. B 225 178 DOI: 10.1016/j.nimb.2004.03.011
[4]
Mara A, Siwy Z, Trautmann C, Wan J, Kamme F 2004 Nano Lett. 4 497 DOI: 10.1021/nl035141o
[5]
Fink D, Chadderton L T, Kiv A, Saad A, Tabacnics M, Rizutto M, de A, Silva A, de O D, Fahrner W R, Hoppe K 2007 Radiat. Eff. Defects Solids 162 543 DOI: 10.1080/10420150701470746
[6]
Madauß L, Zegkinoglou I, Muiños H V, Choi Y W, Kunze S, Zhao M Q, Naylor C H, Ernst P, Pollmann E, Ochedowski O, Lebius H, Benyagoub A, Ban-d’Etat B, Johnson A T C, Djurabekova F, Cuenya B R, Schleberger M 2018 Nanoscale 10 22908 DOI: 10.1039/C8NR04696D
[7]
Liu J, Neumann R, Trautmann C, Müller C 2001 Phys. Rev. B 64 184115 DOI: 10.1103/PhysRevB.64.184115
[8]
Vazquez H, Åhlgren E H, Ochedowski O, Leino A A, Mirzayev R, Kozubek R, Lebius H, Karlusic M, Jaksic M, Krasheninnikov A V, Kotakoski J, Schleberger M, Nordlund K, Djurabekova F 2017 Carbon 114 511 DOI: 10.1016/j.carbon.2016.12.015
[9]
Akcöltekin S, Bukowska H, Peters T, Osmani O, Monnet I, Alzaher I, Ban d’Etat B, Lebius H, Schleberger M 2011 Appl. Phys. Lett. 98 103103 DOI: 10.1063/1.3559619
[10]
Schleberger M, Kotakoski J 2018 Materials 11 1885 DOI: 10.3390/ma11101885
[11]
Madauß L, Ochedowski O, Lebius H, Ban-d’Etat B, Naylor C H, Johnson A T C, Kotakoski J, Schleberger M 2017 2D Mater. 4 015034 DOI: 10.1088/2053-1583/4/1/015034
[12]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147 DOI: 10.1038/nnano.2010.279
[13]
Bertolazzi S, Krasnozhon D, Kis A 2013 ACS Nano 7 3246 DOI: 10.1021/nn3059136
[14]
Hilton M R, Fleischauer P D 1992 Surf. Coat. Technol. 54--55 435 DOI: 10.1016/S0257-8972(07)80062-4
[15]
Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z Y 2014 Adv. Mater. 26 6467 DOI: 10.1002/adma.201401802
[16]
Henry J, Dunlop A, Della-Negra S 1998 Nucl. Instr. Meth. Phys. Res. Sect. B 146 405 DOI: 10.1016/S0168-583X(98)00516-3
[17]
Zhai P F, Nan S, Xu L J, Li W X, Li Z Z, Hu P P, Zeng J, Zhang S X, Sun Y M, Liu J 2019 Nucl. Instr. Meth. Phys. Res. Sect. B 457 72 DOI: 10.1016/j.nimb.2019.07.024
[18]
O’Connell J, Skuratov V, van Vuuren A J, Saifulin M, Akilbekov A 2016 Phys. Status Solidi B 253 2144 DOI: 10.1002/pssb.201600473
[19]
Garrido F, Moll S, Sattonnay G, Thomé L, Vincent L 2009 Nucl. Instr. Meth. Phys. Res. Sect. B 267 1451 DOI: 10.1016/j.nimb.2009.01.070
[20]
Lang M, Toulemonde M, Zhang J, Zhang F, Tracy C L, Lian J, Wang Z, Weber W J, Severin D, Bender M, Trautmann C, Ewing R C 2014 Nucl. Instr. Meth. Phys. Res. Sect. B 336 102 DOI: 10.1016/j.nimb.2014.06.019
[21]
Ishikawa N, Okubo N, Taguchi T 2015 Nanotechnology 26 355701 DOI: 10.1088/0957-4484/26/35/355701
[22]
Schattat B, Bolse W, Klaumünzer S, Zizak I, Scholz R 2005 Appl. Phys. Lett. 87 173110 DOI: 10.1063/1.2115084
[23]
Cowley J, Moodie A 1960 Proc. Phys. Soc. London 76 378 DOI: 10.1088/0370-1328/76/3/308
[24]
Szenes G, Paszti F, Peter A, Popov A I 2000 Nucl. Instr. Meth. Phys. Res. Sect. B 166-167 949 DOI: 10.1016/S0168-583X(99)01042-3
[25]
Chase M W 1998 Journal of Physical Chemical Reference Data Monograph No. 9 New York American Institute of Physics 1594
[26]
Szenes G 1995 Phys. Rev. B 51 8026 DOI: 10.1103/PhysRevB.51.8026
[27]
Szenes G 1999 Phys. Rev. B 60 3140 DOI: 10.1103/PhysRevB.60.3140
[28]
Furuno S, Otsu H, Hojou K, Izui K 1996 Nucl. Instr. Meth. Phys. Res. Sect. B 107 223 DOI: 10.1016/0168-583X(95)00813-6
[29]
Toulemonde M, Assmann W, Dufour C, Meftah A, Studer F, Trautmann C 2006 Symposium on Ion Beam Science - Solved and Unsolved Problems May 1–5, 2006 Copenhagen, Denmark 263
[30]
Meftah A, Brisard F, Costantini J, Hage-Ali M, Stoquert J, Studer F, Toulemonde M 1993 Phys. Rev. B 48 920 DOI: 10.1103/PhysRevB.48.920
[31]
Zhai P F, Liu J, Duan J L, Chang H L, Zeng J, Hou M D, Sun Y M 2011 Nucl. Instr. Meth. Phys. Res. Sect. B 269 2035 DOI: 10.1016/j.nimb.2011.06.010
[32]
Zhai P F, Liu J, Zeng J, Yao H J, Duan J L, Hou M D, Sun Y M, Ewing R 2014 Chin. Phys. B 23 126105 DOI: 10.1088/1674-1056/23/12/126105
[33]
Henry J, Dunlop A, Della-Negra S, Chadderton L T 1997 Rad. Meas. 28 71 DOI: 10.1016/S1350-4487(97)00042-5
[34]
Trautmann C, Toulemonde M, Dufour C, Paumier E 1996 Nucl. Instr. Meth. Phys. Res. Sect. B 108 94 DOI: 10.1016/0168-583X(95)00857-8
[35]
Li W, Kluth P, Schauries D, Rodriguez M, Lang M, Zhang F, Zdorovets M, Trautmann C, Ewing R C 2014 Am. Mineral. 99 1127 DOI: 10.2138/am.2014.4669
[36]
Li W, Lang M, Gleadow A J W, Zdorovets M V, Ewing R C 2012 Earth Planet. Sci. Lett. 321–322 121 DOI: 10.1016/j.epsl.2012.01.008
[37]
Jensen J, Dunlop A, Della-Negra S, Pascard H 1998 Nucl. Instr. Meth. Phys. Res. Sect. B 135 295 DOI: 10.1016/S0168-583X(97)00606-X
[38]
Rymzhanov R A, Medvedev N, O’Connell J H, Janse van Vuuren A, Skuratov V A, Volkov A E 2019 Sci. Rep. 9 3837 DOI: 10.1038/s41598-019-40239-9
[39]
Petkov V, Billinge S J L, Larson P, Mahanti S D, Vogt T, Rangan K K, Kanatzidis M G 2002 Phys. Rev. B 65 092105 DOI: 10.1103/PhysRevB.65.092105
[40]
Jang J T, Jeong S, Seo J W, Kim M C, Sim E, Oh Y, Nam S, Park B, Cheon J 2011 J. Am. Chem. Soc. 133 7636 DOI: 10.1021/ja200400n
[41]
Manna L, Wang L W, Cingolani R, Alivisatos A P 2005 J. Phys. Chem. B 109 6183 DOI: 10.1021/jp0445573
[42]
Xue X X, Feng Y X, Chen K Q, Zhang L X 2018 J. Chem. Phys. 148 134704 DOI: 10.1063/1.5010996
[43]
Zhai P F, Liu J, Zeng J, Duan J L, Xu L J, Yao H J, Guo H, Zhang S X, Hou M D, Sun Y M 2016 Carbon 101 22 DOI: 10.1016/j.carbon.2016.01.076
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[8] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
[13] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[14] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[15] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
No Suggested Reading articles found!