Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
Abstract A hybrid metamaterial with the integration of molybdenum disulfide (MoS2) overlayer is proposed to manipulate the terahertz (THz) wave. The simulated results indicate that the introduction of MoS2 layer could significantly modify the resonant responses with large resonance red-shift and bandwidth broadening due to the depolarization field effect, especially for the structure on the small permitivity substrate. Additionally, the wide-band modulator in off-resonant region and a switch effect at resonance can be achieved by varying the conductivity of MoS2 layer. Further theoretical calculations based on the Lorentz coupling model are consistent with the simulated results, explicating the response behaviors originate from the coupling between MoS2 overlayer and the metastructure. Our results could provide a possibility for active control THz modulator and switchable device based on the MoS2 overlayer and advance the understanding of the coupling mechanism in hybrid structures.
Fund: Project supported by Beijing Natural Science Foundation of China (Grant No. 4181001) and the National Natural Science Foundation of China (Grant Nos. 62075142 and 61875140).
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林) Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials 2022 Chin. Phys. B 31 014101
[1] Ganatra R and Zhang Q 2014 ACS Nano8 4074 [2] Dankert A and Dash S P 2017 Nat. Commun.8 16093 [3] Rukelj Z, Strkalj A and Despoja V 2016 Phys. Rev. B94 115428 [4] Huang Y L, Chen Y, Zhang W, Quek S Y, Chen C H, Li L J, Hsu W T, Chang W H, Zheng Y J, Chen W and Wee A T 2015 Nat. Commun.6 6298 [5] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett.105 136805 [6] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2010 Nat. Nanotechnol.6 147 [7] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano8 1102 [8] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol.8 497 [9] Srivastava Y K, Chaturvedi A, Manjappa M, Kumar A, Dayal G, Kloc C and Singh R 2017 Adv. Opt. Mater.5 1700762 [10] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett.10 1271 [11] Yin Z, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano6 74 [12] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett.13 5944 [13] Amani M, Lien D H, Kiriya D, Xiao J, Azcatl A, Noh J, Madhvapathy S R, Addou R, KC S, Dubey M, Cho K, Wallace R M, Lee S C, He J H, Ager J W, Zhang X, Yablonovitch E and Javey A 2015 Science350 1065 [14] Mak K F, McGill K L, Park J and McEuen P L 2014 Science344 1489 [15] Geim A K and Grigorieva I V 2103 Nature499 419 [16] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai H, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R and Javey A 2014 Proc. Natl. Acad. Sci. USA111 6198 [17] Arnold A J, Razavieh A, Nasr J R, Schulman D S, Eichfeld C M and Das S 2017 ACS Nano11 3110 [18] Veselago V G 1968 Sov. Phys. Usp.10 509 [19] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett.84 4184 [20] Fang N, Lee H, Sun C and Zhang X 2005 Science308 534 [21] Shalaev V M 2007 Nat. Photon.1 41 [22] Pendry J B, Holden A, Robbins D and Stewart W 1999 IEEE Trans. Microwave Theory Tech.47 2075 [23] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science314 977 [24] Soukoulis C M, Kafesaki M and Economou E N 2006 Adv. Mater.18 1941 [25] Soukoulis C M, Linden S and Wegener M 2007 Science315 47 [26] Deng Y W, Zhou Q L, Zhang P J, Jiang N, Ning T, Liang W L and Zhang C L 2021 ACS Appl. Mater. Interfaces13 13565 [27] Ji J, Zhou S, Wang W, Ling F and Yao J 2019 Nanoscale11 9429 [28] Padilla W J, Taylor A J, Highstrete C, Lee M and Averitt R D 2006 Phys. Rev. Lett.96 107401 [29] Li C, Zhou Q L, Shi Y L, Yang Z, Shi L and Zhang C L 2017 Opt. Commun.391 77 [30] Kim T T, Kim H D, Zhao R, Oh S S, Ha T, Chung D S, Lee Y H, Min B and Zhang S 2018 ACS Photonics5 1800 [31] Hu Y, You J, Tong M, Zheng X, Xu Z, Cheng X and Jiang T 2020 Adv. Sci.7 2000799 [32] Hu Y, Jiang T, Sun H, Tong M, You J, Zheng X, Xu Z and Cheng X 2020 Laser Photon. Rev.14 1900338 [33] Zhou J, Zhang C, Liu Q, You J, Zheng X, Cheng X and Jiang T 2020 Nanophotonics9 2797 [34] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B29 094202 [35] Li J, Zhou Y, Quan B, Pan X, Xu X, Ren Z, Hu F, Fan H, Qi M, Bai J, Wang L, Li J and Gu C 2014 Carbon78 102 [36] Su X, Ouyang C, Xu N, Tan S, Gu J, Tian Z, Singh R, Zhang S, Yan F, Han J and Zhang W 2015 Sci. Rep.5 10823 [37] Alloway D M, Hofmann M, Smith D L, Gruhn N E, Graham A L, Colorado R, Wysocki V H, Lee T R, Lee P A and Armstrong N R 2003 J. Phys. Chem. B107 11690 [38] Sun Y, Xia X, Feng H, Yang H, Gu C and Wang L 2008 Appl. Phys. Lett.92 221101 [39] Wang Q, Huang Y, Yao Z and Xu X 2016 Opt. Quantum Electron.48 83
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.