INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response |
Wen Deng(邓文), Li-Sheng Wang(汪礼胜)†, Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔)‡ |
Department of Physics Science and Technology, School of Science, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract Van der Waals heterostructures based on the two-dimensional (2D) semiconductor materials have attracted increasing attention due to their attractive properties. In this work, we demonstrate a high-sensitive back-gated phototransistor based on the vertical HfSe2/MoS2 heterostructure with a broad-spectral response from near-ultraviolet to near-infrared and an efficient gate tunability for photoresponse. Under bias, the phototransistor exhibits high responsivity of up to 1.42×103 A/W, and ultrahigh specific detectivity of up to 1.39×1015 cm·Hz1/2·W-1. Moreover, it can also operate under zero bias with remarkable responsivity of 10.2 A/W, relatively high specific detectivity of 1.43×1014 cm·Hz1/2·W-1, ultralow dark current of 1.22 fA, and high on/off ratio of above 105. These results should be attributed to the fact that the vertical HfSe2/MoS2 heterostructure not only improves the broadband photoresponse of the phototransistor but also greatly enhances its sensitivity. Therefore, the heterostructure provides a promising candidate for next generation high performance phototransistors.
|
Received: 30 January 2022
Revised: 05 May 2022
Accepted manuscript online: 07 May 2022
|
PACS:
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
78.40.Fy
|
(Semiconductors)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51702245) and the Fundamental Research Funds for the Central Universities (Grant No. WUT2021III065JC). |
Corresponding Authors:
Li-Sheng Wang, Feng-Xiang Chen
E-mail: wang_lesson@whut.edu.cn;phonixchen79@whut.edu.cn
|
Cite this article:
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔) High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response 2022 Chin. Phys. B 31 128502
|
[1] Kim C, Lee K Y, Moon I, Issarapanacheewin S and Yoo W J 2019 Nanoscale 11 18246 [2] Wang Y, Li D, Lai X, Liu B, Chen Y, Wang F, Wang R and Zhang L 2019 Curr. Appl. Phys. 20 298 [3] Lee S, Park Y, Yoo G and Heo J 2017 Appl. Phys. Lett. 111 223106 [4] Liu H, Neal A T and Ye P D 2012 ACS Nano 6 8563 [5] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664 [6] Peng B, Yu G, Zhao Y, Xu Q, Xing G, Liu X, Fu D, Liu B, Tan J R S, Tang W, Lu H, Xie J, Deng L, Sum T C and Loh K P 2016 ACS Nano 10 6383 [7] Li Y, Distefano J G, Murthy A A, Cain J D, Hanson E D, Li Q, Castro F C, Chen X and Dravid V P 2017 ACS Nano 11 10321 [8] Jing W, Ding N, Li L, Jiang F, Xiong X, Liu N, Zhai T and Gao Y 2017 Opt. Express 25 14565 [9] Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X and Lu W 2015 Small 11 2392 [10] Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens F H L and Konstantatos G 2014 Adv. Mater. 27 176 [11] Liu X, Li C L, Dai T F, Tao Z, Zhou W X, Lei W and Chang J 2019 IEEE Electron Device Lett. 40 746 [12] Ulaganathan R K, Yadav K, Sankar R, Chou F C and Chen Y T 2018 Adv. Mater. Interfaces 6 1801336 [13] Huo N, Gupta S and Konstantatos G 2017 Adv. Mater. 29 1606576 [14] Tan C, Wang H, Zhu X, Gao W, Li H, Chen J, Li G, Chen L, Xu J, Hu X, Li L and Zhai T 2020 ACS Appl. Mater. Inter. 12 44934 [15] Tan C, Yin S, Chen J, Lu Y, Wei W, Du H, Liu K, Wang F, Zhai T and Li L 2021 ACS Nano 15 8328 [16] Wang F, Luo P, Zhang Y, Huang Y, Zhang Q, Li Y and Zhai T 2020 Sci. China Mater. 63 1537 [17] Yang S, Pi L, Li L, Liu K, Pei K, Han W, Wang F, Zhuge F, Li H, Cheng G and Zhai T 2021 Adv. Mater. 33 2106537 [18] Liu R, Wang F, Liu L, He X, Chen J, Li Y and Zhai T 2021 Small Struct. 2 2000136 [19] Zhou X, Zhou N, Li C, Song H, Zhang Q, Hu X, Gan L, Li H, Lü J, Luo J, Xiong J and Zhai T 2017 2D Mater. 4 025048 [20] Zhong J, Wu B, Madoune Y, Wang Y, Liu Z and Liu Y 2022 Nano Res. 15 2489 [21] Chen P, Zhang L, Wang R, Shang J and Zhang S 2019 Chem. Phys. Lett. 734 136703 [22] Geim A K and Grigorieva I V 2013 Nature 499 419 [23] Chen Y, Wang X, Wu G, Wang Z, Fang H, Lin T, Sun S, Shen H, Hu W, Wang J, Sun J, Meng X and Chu J 2018 Small 14 1703293 [24] Zhang R, Ma X, An C, Zhang D, Sun D, Hu X and Liu J 2019 2D Mater. 6 035033 [25] He Z, Guo J, Li S, Lei Z, Lin L, Ke Y, Jie W, Gong T, Lin Y, Cheng T, Huang W and Zhang X 2020 Adv. Mater. Interfaces 7 1901848 [26] Yin L, Xu K, Wen Y, Wang Z, Huang Y, Wang F, Shifa T A, Cheng R, Ma H and He J 2016 Appl. Phys. Lett. 109 213105 [27] Aretouli K E, Tsipas P, Tsoutsou D, Marquez-Velasco J, Xenogiannopoulou E, Giamini S A, Vassalou E, Kelaidis N and Dimoulas A 2015 Appl. Phys. Lett. 106 143105 [28] Tsoutsou D, Aretouli K E, Tsipas P, Marquez-Velasco J, Xenogiannopoulou E, Kelaidis N, Giamini S A and Dimoulas A 2016 ACS Appl. Mater. Inter. 8 1836 [29] Chen Y, Wang X, Huang L, Wang X, Jiang W, Wang Z, Wang P, Wu B, Lin T, Shen H, Wei Z, Hu W, Meng X, Chu J and Wang J 2021 Nat. Commun. 12 4030 [30] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano 6 74 [31] Kang M, Rathi S, Lee I, Li L, Khan M A, Lim D, Lee Y, Park J, Yun S J, Youn Doo-Hyeb, Jun C and Kim Gil-Ho 2017 Nanoscale 9 1645 [32] Zhao M, Chang M J, Wang Q, Zhu Z T, Zhai X P, Zirak M, Moshfegh A Z, Song Y L and Zhang H L 2015 Chem. Commun. 51 12262 [33] Ju W, Zhang Y, Li T, Wang D, Zhao E, Hu G, Xu Y and Li H 2021 Res. Phys. 25 104250 [34] Wu X, Zhou Z, Yin J, Zhang M, Zhou L, Na Q, Wang J, Yu Y, Wang J, Chi R and Yan P 2020 Nanotechnology. 31 245204 [35] Wood D L and Tauc J 1972 Phys. Rev. B 5 3144 [36] Adrián A C, Ángel M-G, Miguel A S, Pilar P, Ruth F, Gastón G, Mercedes T, José A B A, Jesús G, Valentín G B, J. M R and Javier S B 2021 Inorg. Chem. 60 1746 [37] Huo N, and Konstantatos G 2017 Nat Commun. 8 572 [38] Bai F, Qi J, Li F, Fang Y, Han W, Wu H and Zhang Y 2018 Adv. Mater. Interfaces 5 1701275 [39] Gong F, Fang H, Wang P, Su M, Li Q, Ho J C, Chen X, Lu W, Liao L, Wang J and Hu W 2017 Nanotech. 28 484002 [40] Li F, Tao R, Cao B, Yang L and Wang Z 2021 Adv. Funct. Mater. 31 2104367 [41] Wang H, Li Z, Li D, Xu X, Chen P, Pi L, Zhou X and Zhai T 2021 Adv. Funct. Mater. 31 2106105 [42] Park J, Das D, Ahn M, Park S, Hur J and Jeon S 2019 Nano Converg. 6 32 [43] Han Z, Liang H, Huo W, Zhu X, Du X and Mei Z 2020 Adv. Opt. Mater. 8 1901833 [44] Gong F, Luo W, Wang J, Wang P, Fang H, Zheng D, Guo N, Wang J, Luo M, Ho J C, Chen X, Lu W, Liao L and Hu W 2016 Adv. Funct. Mater. 26 6084 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|