Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy
Li-Jun Xu(徐丽君)1,2, Peng-Fei Zhai(翟鹏飞)1,2,†, Sheng-Xia Zhang(张胜霞)1, Jian Zeng(曾健)1,2, Pei-Pei Hu(胡培培)1, Zong-Zhen Li(李宗臻)1,2, Li Liu(刘丽)1,2, You-Mei Sun(孙友梅)1,2, and Jie Liu(刘杰)1,2,‡
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 2School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11675233, 11690041, 11405229, 11705246, and 11505243), Chinese Academy of Sciences “Light of West China” Program, and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020412).
Cite this article:
Li-Jun Xu(徐丽君), Peng-Fei Zhai(翟鹏飞)†, Sheng-Xia Zhang(张胜霞), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Zong-Zhen Li(李宗臻), Li Liu(刘丽), You-Mei Sun(孙友梅), and Jie Liu(刘杰)‡ Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy 2020 Chin. Phys. B 29 106103
Fig. 1.
A sketch map of experiment process.
Ion
Energy/MeV
(dE / x)e/(keV/nm)
(dE/dx)n/(keV/nm)
Range/μm
Fluence/(ions/cm2)
86Kr
2029.4
7.7
3.9×10−3
193.6
5×1010
86Kr
1795.3
8.2
4.4×10−3
164.0
5×1010
86Kr
1503.4
9.1
5.1×10−3
130.2
5×1010
129Xe
2047.5
18.9
1.2×10−2
96.8
5×1012
181Ta
1785.7
28.8
3.2×10−2
65.8
5×1010
209Bi
1390.0
35.2
5.7×10−2
46.8
5×1011
Table 1.
Irradiation parameters for MoS2.
Fig. 2.
Plan-view TEM images of MoS2 after swift heavy ion irradiation with (a), (b) 129Xe 5×1012 ions/cm2, (c), (d) 181Ta 5×1010 ions/cm2, and (e), (f) 209Bi 5×1011 ions/cm2. The left and right rows are the phase contrast images obtained at under-focus and over-focus conditions, respectively.
Fig. 3.
Statistical diameter distribution of ion tracks in irradiated MoS2 with different electronic energy losses. The average diameters of the ion tracks (Da) are fitted according to Gaussian curve.
Fig. 4.
TEM images of different ion track morphologies of MoS2 irradiated at 30° with 1785.7 MeV 181Ta ions. (a) Nearly cylindrical ion tracks consist of two spherical hillocks at each end. (b) Sandglass-like ion tracks. The apparent length in MoS2 sample is about 180 nm. (c) The q-tips-like ion tracks. The size of hillocks increases with increasing apparent length.
Fig. 5.
Schematics of the formation process of ion track in irradiated MoS2 with SHIs. (a) SHIs bombardment. (b) Target material melting along the ion path. (c) Outflow of molten phase towards the free surface. (d) Recrystallization in ion damage zone.
Morphology
Lap/nm
Lac/nm
Dh/nm
cylinders
30.5±1.0
35.2±1.2
4.0±0.2
sunglass
180.3±1.1
208.2±1.3
16.6±0.7
q-tips
187.4±1.4
216.4±1.6
20.6±1.1
Table 2.
Track related parameters of MoS2 with different morphologies. Morphology, hillock diameter (Dh), apparent track length (Lap), and actual track length (Lac) were obtained from TEM measurements in Fig. 3.
[1]
Dufour Ch, Audouard A, Beneu F, Dural J, Girard J P, Hairie A, Levalois M, Paumier E, Toulemonde M 1993 J. Phys.: Condens. Matter 5 4573 DOI: 10.1088/0953-8984/5/26/027
[2]
Heiranian M, Farimani A B, Aluru N R 2015 Nat. Commun. 6 8616 DOI: 10.1038/ncomms9616
[3]
Zollondz J H, Weidinger A 2004 Nucl. Instrum. Methods Phys. Res. B 225 178 DOI: 10.1016/j.nimb.2004.03.011
[4]
Mara A, Siwy Z, Trautmann C, Wan J, Kamme F 2004 Nano Lett. 4 497 DOI: 10.1021/nl035141o
[5]
Fink D, Chadderton L T, Kiv A, Saad A, Tabacnics M, Rizutto M, de A, Silva A, de O D, Fahrner W R, Hoppe K 2007 Radiat. Eff. Defects Solids 162 543 DOI: 10.1080/10420150701470746
[6]
Madauß L, Zegkinoglou I, Muiños H V, Choi Y W, Kunze S, Zhao M Q, Naylor C H, Ernst P, Pollmann E, Ochedowski O, Lebius H, Benyagoub A, Ban-d’Etat B, Johnson A T C, Djurabekova F, Cuenya B R, Schleberger M 2018 Nanoscale 10 22908 DOI: 10.1039/C8NR04696D
Vazquez H, Åhlgren E H, Ochedowski O, Leino A A, Mirzayev R, Kozubek R, Lebius H, Karlusic M, Jaksic M, Krasheninnikov A V, Kotakoski J, Schleberger M, Nordlund K, Djurabekova F 2017 Carbon 114 511 DOI: 10.1016/j.carbon.2016.12.015
[9]
Akcöltekin S, Bukowska H, Peters T, Osmani O, Monnet I, Alzaher I, Ban d’Etat B, Lebius H, Schleberger M 2011 Appl. Phys. Lett. 98 103103 DOI: 10.1063/1.3559619
[10]
Schleberger M, Kotakoski J 2018 Materials 11 1885 DOI: 10.3390/ma11101885
[11]
Madauß L, Ochedowski O, Lebius H, Ban-d’Etat B, Naylor C H, Johnson A T C, Kotakoski J, Schleberger M 2017 2D Mater. 4 015034 DOI: 10.1088/2053-1583/4/1/015034
[12]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147 DOI: 10.1038/nnano.2010.279
[13]
Bertolazzi S, Krasnozhon D, Kis A 2013 ACS Nano 7 3246 DOI: 10.1021/nn3059136
Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z Y 2014 Adv. Mater. 26 6467 DOI: 10.1002/adma.201401802
[16]
Henry J, Dunlop A, Della-Negra S 1998 Nucl. Instr. Meth. Phys. Res. Sect. B 146 405 DOI: 10.1016/S0168-583X(98)00516-3
[17]
Zhai P F, Nan S, Xu L J, Li W X, Li Z Z, Hu P P, Zeng J, Zhang S X, Sun Y M, Liu J 2019 Nucl. Instr. Meth. Phys. Res. Sect. B 457 72 DOI: 10.1016/j.nimb.2019.07.024
[18]
O’Connell J, Skuratov V, van Vuuren A J, Saifulin M, Akilbekov A 2016 Phys. Status Solidi B 253 2144 DOI: 10.1002/pssb.201600473
[19]
Garrido F, Moll S, Sattonnay G, Thomé L, Vincent L 2009 Nucl. Instr. Meth. Phys. Res. Sect. B 267 1451 DOI: 10.1016/j.nimb.2009.01.070
[20]
Lang M, Toulemonde M, Zhang J, Zhang F, Tracy C L, Lian J, Wang Z, Weber W J, Severin D, Bender M, Trautmann C, Ewing R C 2014 Nucl. Instr. Meth. Phys. Res. Sect. B 336 102 DOI: 10.1016/j.nimb.2014.06.019
Furuno S, Otsu H, Hojou K, Izui K 1996 Nucl. Instr. Meth. Phys. Res. Sect. B 107 223 DOI: 10.1016/0168-583X(95)00813-6
[29]
Toulemonde M, Assmann W, Dufour C, Meftah A, Studer F, Trautmann C 2006 Symposium on Ion Beam Science - Solved and Unsolved Problems May 1–5, 2006 Copenhagen, Denmark 263
[30]
Meftah A, Brisard F, Costantini J, Hage-Ali M, Stoquert J, Studer F, Toulemonde M 1993 Phys. Rev. B 48 920 DOI: 10.1103/PhysRevB.48.920
[31]
Zhai P F, Liu J, Duan J L, Chang H L, Zeng J, Hou M D, Sun Y M 2011 Nucl. Instr. Meth. Phys. Res. Sect. B 269 2035 DOI: 10.1016/j.nimb.2011.06.010
[32]
Zhai P F, Liu J, Zeng J, Yao H J, Duan J L, Hou M D, Sun Y M, Ewing R 2014 Chin. Phys. B 23 126105 DOI: 10.1088/1674-1056/23/12/126105
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.