Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086107    DOI: 10.1088/1674-1056/abff43
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing

Zheng Han(韩铮)1, Xu Wang(王旭)1,†, Jiao Wang(王娇)2, Qing Liao(廖庆)3, and Bingsheng Li(李炳生)3,‡
1 Nuclear Power Institute of China, Chengdu 610200, China;
2 Sichuan Vocational and Technical College of Communications, Chengdu 611130, China;
3 State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  A nano-twinned microstructure was found in amorphous SiC after high-temperature annealing. Grazing incidence x-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were performed to characterize the microstructure and phase transition in the recrystallization layer. After 1500 ℃ or 2-h annealing, 3C-SiC grains and numerous stacking faults on the {111} planes were visible. Some 3C-SiC grains have nano-twinned structure with {011} planes. Between the nano-twinned 3C-SiC grains, there is a stacking fault, indicating that the formation mechanisms of the nano-twinned structure are related to the disorder of Si atoms. The increase in the twin thickness with increasing annealing temperature demonstrates that the nano-twinned structure can sink for lattice defects, in order to improve the radiation tolerance of SiC.
Keywords:  6H-SiC      ion implantation      microstructure      transmission electron microscopy      recrystallization  
Received:  07 March 2021      Revised:  21 April 2021      Accepted manuscript online:  10 May 2021
PACS:  61.80.Jh (Ion radiation effects)  
  61.82.Fk (Semiconductors)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  81.10.Jt (Growth from solid phases (including multiphase diffusion and recrystallization))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075194) and Sichuan Science and Technology Program (Grant No. 2020ZYD055).
Corresponding Authors:  Xu Wang, Bingsheng Li     E-mail:;

Cite this article: 

Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生) Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing 2021 Chin. Phys. B 30 086107

[1] Choyke W J and Persl G 1997 Mater. Res. Soc. Bull. 22 25
[2] Park C H, Cheong B H, Lee K H and Chang K J 1994 Phys. Rev. B 49 4485
[3] Snead L L, Katoh Y, Henager C H, Hasegawa A, Kohyama A and Riccardi B 2007 J. Nucl. Mater. 367-370 659
[4] Li B S, Du Y Y and Wang Z G 2015 Nucl. Intrum. Methods Phys. Res. Sect. B 345 53
[5] Ye C, Ran G, Zhou W, Shen Q, Feng Q J and Lin J X 2017 Materials 10 1231
[6] Liao Q, Li B S, Kang L and Li X G 2020 Chin. Phys. B 29 076103
[7] Daghouj N, Li B S, Callisti M, Sen H S, Jin J, Ou X, Karlik M and Polcar T 2020 Acta Mater. 188 609
[8] Li J J, Huang H F, Lei G H, Huang Q, Liu R D, Li D H and Yan L 2014 J. Nucl. Mater. 454 173
[9] Zhang L M, Jiang W J, Ai W S, Chen L and Wang T S 2018 J. Nucl. Mater. 505 249
[10] Li B S, Krsjak V, Degmova J, Wang Z G, Shen T L, Li H, Sojak S, Slugen V and Kawasuso A 2020 J. Nucl. Mater. 535 152180
[11] Wang X, Li J H, Wang J, Song J, Zhao F Q, Tang H X, Li B S and Xiong A L 2019 Mater. Des. Process. Comm. 1 e87
[12] Bae In-Tae, Ishimaru M, Hirotsu Y and Sickafus K E 2004 J. Appl. Phys. 96 1451
[13] Heera V, Kogler R, Skorupa W and Stoemenos J 1995 Appl. Phys. Lett. 67 1999
[14] Liu Y Z, Li B S, Lin H and Zhang L 2017 Chin. Phys. Lett. 34 076101
[15] Harada S, Ishimaru M, Motooka T, Nakata T, Yoneda T and Inoue M 1996 Appl. Phys. Lett. 69 3534
[16] Cao S Q, Pedraza A J, Lowndes D H and Allard L F 1994 Appl. Phys. Lett. 65 2940
[17] Wang C X, Yang T F, Tracy C L, Xiao J R, Liu S H, Fang Y, Yan Z F, Ge W, Xue J M, Zhang J, Wang J Y, Huang Q, Ewing R C and Wang Y G 2018 Acta Mater. 144 432
[18] Wang C X, Yang T F, Xiao J R, Liu S S, Xue J M, Wang J Y, Huang Q and Wang Y G 2015 Acta Mater. 98 197
[19] Dai H, Wong E W, Lu Y Z, Fan S and Lieber C M 1995 Nature 375 769
[20] Fan Y J, Wu X L and Chu P K 2006 Prog. Mater. Sci. 51 983
[21] Matsumoto T, Takahshi J, Tamaki T, Futagi T, Mimura H, Kanemitsu Y 1994 Appl. Phys. Lett. 64 226
[22] Wang C H, Chang Y H, Yen M Y, Peng C W, Lee C Y and Chiu H T 2005 Adv. Mater. 17 419
[23] Li L, Jin S X, Zhang P, Wang D D, Cao X Z, Guo L P, Xu Q, Li J, Zhang T M, Li L B and Wang B Y 2019 J. Nucl. Mater. 526 151748
[24] Jin S X, Bing M, Zhang W P, Zhang T M, Li Y, Guo L P, Cao X Z and Wang B Y 2019 Materialia 5 100241
[25] Li B S, Peng D P, Li J H, Kang L, Zhang T M, Zhang Z X, Jin S X, Cao X Z, Liu J H, Wu L, Wang X, Fang Z Q, Zhou C L, Yang Z and Krsjak V 2021 Vacuum 184 109909
[26] Liao Q, Li B S, Kang L and Li X G 2020 Chin. Phys. B 29 076103
[27] Zeigler F J, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
[28] Devanathan R and Weber W J 2000 J. Nucl. Mater. 278 258
[29] Li B S, Zhang C, Liu H P, Xu L J, Wang X, Yang Z, Ge F F, Gao W and Shen T L 2020 Fusion Eng. Des. 154 111511
[30] Leung J W, Linnarsson M K, Svensson B G and Cockayne D J H 2005 Phys. Rev. B 71 165210
[31] Persson P O A, Hultman L, Janson M S, Hallen A, Yakimova R, Panknin D and Skorupa W 2002 J. Appl. Phys. 92 2501
[32] Xi J Q, Yuan F L, Zhang Y W and Weber W J 2017 Scripta Mater. 139 1
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[6] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[7] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[8] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[9] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[10] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[11] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[12] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[13] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[14] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!