CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction |
Fenghua Qi(戚凤华)1 and Xingfei Zhou(周兴飞)2,† |
1 School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China; 2 New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract We investigate the transport properties of electron in a 1T'-MoS2-based p-n junction. The anisotropic refraction of electron is found when the electron beam crosses the p-n junction, which brings the phenomenon of valley splitting without any external fields. Moreover, it is found that the valley-spin-dependent anomalous Klein tunneling, i.e., the perfect transmission exists at a nonzero incident angle of valley-spin-dependent electron, happens when the vertical electric field is equal to the critical electric field. These two peculiar properties arise from the same reason that the tilted band structure makes the directions of wavevector and velocity different. Our work designs a special valley splitter without any external fields and finds a new type of Klein tunneling.
|
Received: 08 November 2021
Revised: 24 December 2021
Accepted manuscript online: 29 December 2021
|
PACS:
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12104232, 11805103, and 11804167), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20190137 and BK20180739), the Innovation Research Project of Jiangsu Province (Grant No. CZ0070619002), and NJUPT-SF (Grant No. NY218128). |
Corresponding Authors:
Xingfei Zhou
E-mail: zxf@njupt.edu.cn
|
Cite this article:
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞) Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction 2022 Chin. Phys. B 31 077301
|
[1] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193 [2] Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P and Rao C N R 2013 ACS Nano 7 4879 [3] Xu K, Wang Z, Du X, Safdar M, Jiang C and He J 2013 Nanotechnology 24 465705 [4] Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu J B and Zhu H 2017 Appl. Phys. Rev. 4 021306 [5] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263 [6] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [7] Amin B, Singh N and Schwingenschlögl U 2015 Phys. Rev. B 92 075439 [8] Heising J and Kanatzidis M G 1999 J. Am. Chem. Soc. 121 11720 [9] Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M and Chhowalla M 2012 ACS Nano 6 7311 [10] Zheng F, Cai C, Ge S, Zhang X, Liu X, Lu H, Zhang Y, Qiu J, Taniguchi T, Watanabe K, Jia S, Qi J, Chen J H, Sun D and Feng J 2016 Adv. Mater. 28 4845 [11] Fei Z, Palomaki T, Wu S, Zhao W, Cai X, Sun B, Nguyen P, Finney J, Xu X and Cobden D H 2017 Nat. Phys. 13 677 [12] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 [13] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A and Cobden D H 2018 Science 362 922 [14] Sadhukhan K and Agarwal A 2017 Phys. Rev. B 96 035410 [15] Mojarro M A, Carrillo-Bastos R and Maytorena J A 2021 Phys. Rev. B 103 165415 [16] Li Z, Cao T, Wu M and Louie S G 2017 Nano Lett. 17 2280 [17] Nguyen V H and Charlier J C 2018 Phys. Rev. B 97 235113 [18] Zhang S H and Yang W 2018 Phys. Rev. B 97 235440 [19] Zhou X 2019 Phys. Rev. B 100 195139 [20] Zhou X 2020 Phys. Lett. A 384 126612 [21] Zhou X 2020 Phys. Rev. B 102 045132 [22] Tan C Y, Yan C X, Zhao Y H, Guo H and Chang H R 2021 Phys. Rev. B 103 125425 [23] Ohkawa F J and Uemura Y 1977 J. Phys. Soc. Jpn. 43 907 [24] Sham L J, Allen S J, Kamgar A and Tsui D C 1978 Phys. Rev. Lett. 40 472 [25] Koiller B, Hu X and Das Sarma S 2002 Phys. Rev. Lett. 88 027903 [26] Shkolnikov Y P, De Poortere E P, Tutuc E and Shayegan M 2002 Phys. Rev. Lett. 89 226805 [27] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172 [28] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [29] Ezawa M 2013 Phys. Rev. B 87 155415 [30] Zhang L, Gong K, Chen J, Liu L, Zhu Y, Xiao D and Guo H 2014 Phys. Rev. B 90 195428 [31] Liu Y, Gao Y, Zhang S, He J, Yu J and Liu Z 2019 Nano Res. 12 2695 [32] Zheng J, Lu J and Zhai F 2020 Nanotechnology 32 025205 [33] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806 [34] Pan H, Li X, Jiang H, Yao Y and Yang S A 2015 Phys. Rev. B 91 045404 [35] Nguyen V H, Dechamps S, Dollfus P and Charlier J C 2016 Phys. Rev. Lett. 117 247702 [36] Akhmerov A R, Bardarson J H, Rycerz A and Beenakker C W J 2008 Phys. Rev. B 77 205416 [37] Qiao Z, Jung J, Lin C, Ren Y, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 206601 [38] Li J, Zhang R X, Yin Z, Zhang J, Watanabe K, Taniguchi T, Liu C and Zhu J 2018 Science 362 1149 [39] Garcia-Pomar J L, Cortijo A and Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801 [40] Settnes M, Power S R, Brandbyge M and Jauho A P 2016 Phys. Rev. Lett. 117 276801 [41] Fujita T, Jalil M B A and Tan S G 2008 Appl. Phys. Lett. 97 043508 [42] Zhai F, Ma Y and Chang K 2011 New J. Phys. 13 083029 [43] Liu Y, Song J, Li Y, Liu Y and Sun Q F 2013 Phys. Rev. B 87 195445 [44] Qi F and Jin G 2014 J. Appl. Phys. 115 173701 [45] Xu Y, Zhou X and Jin G 2016 Appl. Phys. Lett. 108 203104 [46] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 [47] Cheng R and Zhou X 2019 J. Appl. Phys. 125 175105 [48] Klein O 1929 Z. Phys. 53 157 [49] Calogeracos A and Dombey N 1999 Contemp. Phys. 40 313 [50] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620 [51] Zeb M A, Sabeeh K and Tahir M 2008 Phys. Rev. B 78 165420 [52] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807 [53] Rozhkov A, Giavaras G, Bliokh Y P, Freilikher V and Nori F 2011 Phys. Rep. 503 77 [54] Allain P E and Fuchs J N 2011 Eur. Phys. J. B 83 301 [55] Peng J, Liu Y, Luo X, Wu J, Lin Y, Guo Y, Zhao J, Wu X, Wu C and Xie Y 2019 Adv. Mater. 31 1900568 [56] Cheianov V V, Fal'ko V and Altshuler B L 2007 Science 315 1252 [57] Young A F and Kim P 2009 Nat. Phys. 5 222 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|