Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066201    DOI: 10.1088/1674-1056/ac4f5a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities

Lu-Lu Pei(裴露露)1,2, Peng-Fei Ju(鞠鹏飞)3, Li Ji(吉利)1,†, Hong-Xuan Li(李红轩)1,‡, Xiao-Hong Liu(刘晓红)1, Hui-Di Zhou(周惠娣)1, and Jian-Min Chen(陈建敏)1
1 Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shanghai Aerospace Equipment Manufacture, Shanghai 200245, China
Abstract  Current-carrying sliding is widely applied in aerospace equipment, but it is limited by the poor lubricity of the present materials and the unclear tribological mechanism. This study demonstrated the potential of MoS2-based materials with excellent lubricity as space sliding electrical contact materials by doping Ti to improve its conductivity. The tribological behavior of MoS2-Ti films under current-carrying sliding in vacuum was studied by establishing a simulation evaluating device. Moreover, the noncurrent-carrying sliding and static current-carrying experiments in vacuum were carried out for comparison to understand the tribological mechanism. In addition to mechanical wear, the current-induced arc erosion and thermal effect take important roles in accelerating the wear. Arc erosion is caused by the accumulation of electric charge, which is related to the conductivity of the film. While the current-thermal effect softens the film, causing strong adhesive wear, and good conductivity and the large contact area are beneficial for minimizing the thermal effect. So the moderate hardness and good conductivity of MoS2-Ti film contribute to its excellent current-carrying tribological behavior in vacuum, showing a significant advantage compared with the traditional ones.
Keywords:  MoS2-Ti films      conductivity      current-carrying tribological behavior      vacuum  
Received:  21 December 2021      Revised:  21 January 2022      Accepted manuscript online:  27 January 2022
PACS:  62.20.Qp (Friction, tribology, and hardness)  
  81.15.Cd (Deposition by sputtering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51775537) and Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y202084).
Corresponding Authors:  Li Ji, Hong-Xuan Li     E-mail:  jili@licp.cas.cn;lihx@licp.cas.cn

Cite this article: 

Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏) Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities 2022 Chin. Phys. B 31 066201

[1] Braunovic M, Konchits V and Myshkin N 2007 Electrical Contacts: Fundamentals, Applications and Technology (CRC Press) p. 261
[2] Mogonye J E, Argibay N, Goeke R S, Kotula P G, Scharf T W and Prasad S V 2016 Wear 376-377 1662
[3] Xie X L, Zhang L, Xiao J K, Qian Z Y, Zhang T and Zhou K C 2015 Trans. Nonferrous Met. Soc. China. 25 3029
[4] Lee J, Kim H, Han K, Lee Y, Choi M and Kim C 2019 ACS Appl. Mater. Interfaces 11 6276
[5] Serpini E, Rota A, Ballestrazzi A, Marchetto D, Gualtieri E and Valeri S 2017 Surf. Coat. Tech. 319 345
[6] Stoyanov P, Chromik R R, Gupta S and Lince J R 2010 Surf. Coat. Tech. 205 1449
[7] Colas G, Saulot A, Regis E and Berthier Y 2015 Wear 330-331 448
[8] Fox V, Gampshire J and Teer D 1999 Surf. Coat. Tech. 112 118
[9] Teer D G, Hampshire J, Fox V and Bellido-Gonzalez V 1997 Surf. Coat. Tech. 94-95 572
[10] Gilmore R, Baker M A, Gibson P N and Gissler W 1998 Surf. Coat. Tech. 105 45
[11] Renevier N M, Fox V C, Teer D G and Hampshire J 2000 Surf. Coat. Tech. 127 24
[12] Rigato V, Maggioni G, Boscarino D, Sangaletti L, Depero L, Fox V C, Teer D and Santini C 1999 Surf. Coat. Tech. 116-119 176
[13] Zhao H, Barber G C and Liu J 2001 Wear 249 409
[14] Zhou K C, Xiao J K, Zhang L, Xie X L and Li Z Y 2015 Wear 326-327 48
[15] Grandin M and Wiklund U 2013 Wear 302 1481
[16] Wang P, Yue W, Lu Z B, Zhang G G and Zhu L N 2018 Tribol. Int. 127 379
[17] Yang Z H, Zhang Y Z, Zhao F and Shanhguan B 2016 Tribol. Int. 94 71
[18] Grandin M and Wiklund U 2018 Wear 398-399 227
[19] Zhao H, Feng Y, Zhou Z J, Qian G, Zhang J C, Huang X C and Zhang X B 2020 Wear 444-445 203156
[20] Generalova K N, Ryaposov I V and Shatsov A A 2016 J. Frict. Wear 37 482
[21] Yang Z H, Ge Y X, Zhang X, Shangguan B, Zhang Y Z and Zhang J W 2019 Materials 12 2881
[22] Qin X P, Ke P L, Wang A Y and Kim K H 2013 Surf. Coat. Tech. 228 275
[23] Li H, Li X, Zhang G A, Wang L P and Wu G Z 2017 Tribol. Lett. 65 38
[24] Lince J R, Hilton M R and Bommannavar A S 1995 J. Mater. Res. 10 2091
[25] Wang Y F, Wang Y, Li X, Li A, Lu Z B, Zhang G A and Wu Z G 2019 Tribol. Trans. 62 1119
[26] Yang H J, Chen G X, Gao G Q, Wu G N and Zhang W H 2015 Wear 332-333 949
[27] Rieder W F 2000 IEEE Trans Compon Packag Technol. 23 286
[28] Ky D L C, Tran Khac B C, Le C T, Kim Y S and Chung K H 2018 Friction 6 395
[29] Windom B C, Sawyer W G and Hahn D W 2011 Tribol. Lett. 42 301
[30] Xu W, Hu R, Li J S, Zhang Y Z and Fu H Z 2012 Trans. Nonferrous Met. Soc. China 22 78
[31] Xiao Q D and Wu S 2014 Adv. Appl. Ceram. 113 381
[32] Deng CY, Yin J, Zhang H B, Xiong X, Wang P, Sun M and Wu X G 2019 Proc IMechE Part J: J Engineering Tribology 233 380
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[9] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[10] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!