Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058104    DOI: 10.1088/1674-1056/ab8203
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction

Bao Lei(雷宝)1, Yu-Yang Zhang(张余洋)1,2, Shi-Xuan Du(杜世萱)1,2,3
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention because of their unique properties and great potential in nano-technology applications. Great efforts have been devoted to fabrication of novel structured TMD monolayers by modifying their pristine structures at the atomic level. Here we propose an intriguing structured 1T-PtTe2 monolayer as hydrogen evolution reaction (HER) catalyst, namely, Pt4Te7, using first-principles calculations. It is found that Pt4Te7 is a stable monolayer material verified by the calculation of formation energy, phonon dispersion, and ab initio molecular dynamics simulations. Remarkably, the novel structured void-containing monolayer exhibits superior catalytic activity toward HER compared with the pristine one, with a Gibbs free energy very close to zero (less than 0.07 eV). These features indicate that Pt4Te7 monolayer is a high-performance HER catalyst with a high platinum utilization. These findings open new perspectives for the functionalization of 2D TMD materials at an atomic level and its application in HER catalysis.
Keywords:  first-principles calculations      structured PtTe2 monolayer      void-containing materials      HER catalyst  
Received:  05 January 2020      Revised:  25 February 2020      Accepted manuscript online: 
PACS:  81.16.Hc (Catalytic methods)  
  31.15.A- (Ab initio calculations)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  14.60.Cd (Electrons (including positrons))  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0202300, 2018YFA0305800, and 2019YFA0308500), the National Natural Science Foundation of China (Grant Nos. 61888102, 51872284, and 51922011), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).
Corresponding Authors:  Shi-Xuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱) Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction 2020 Chin. Phys. B 29 058104

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Miro P, Audiffred M and Heine T 2014 Chem. Soc. Rev. 43 6537
[4] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[5] Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X and Gao H J 2018 Chin. Phys. B 27 086804
[6] Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J and Cai M Q 2018 Nanoscale 10 8677
[7] Liao C S, Zhao Q Q, Zhao Y Q, Yu Z L, Zhou H, He P B, Yang J L and Cai M Q 2019 J. Phys. Chem. Solids 135 109060
[8] Yang D J, Du Y H, Zhao Y Q, Yu Z L and Cai M Q 2019 Physica Status Solidi B 256 1800540
[9] Guo G Y and Liang W Y 1986 J. Phys. C: Solid State Phys. 19 995
[10] Dai D, Koo H J, Whangbo M H, Soulard C, Rocquefelte X and Jobic S 2003 J. Solid State Chem. 173 114
[11] Chia X, Adriano A, Lazar P, Sofer Z, Luxa J and Pumera M 2016 Adv. Funct. Mater. 26 4306
[12] Wang Y, Li L, Yao W, Song S, Sun J T, Pan J, Ren X, Li C, Okunishi E, Wang Y Q, Wang E, Shao Y, Zhang Y Y, Yang H-t, Schwier E F, Iwasawa H, Shimada K, Taniguchi M, Cheng Z, Zhou S, Du S, Pennycook S J, Pantelides S T and Gao H J 2015 Nano Lett. 15 4013
[13] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater 28 2399
[14] Wang Z, Li Q, Besenbacher F and Dong M 2016 Adv. Mater. 28 10224
[15] Li L, Wang W, Chai Y, Li H, Tian M and Zhai T 2017 Adv. Funct. Mater. 27 1701011
[16] Yao W, Wang E, Huang H, Deng K, Yan M, Zhang K, Miyamoto K, Okuda T, Li L, Wang Y, Gao H, Liu C, Duan W and Zhou S 2017 Nat. Commun. 8 14216
[17] Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S, Duan W and Zhou S 2017 Nat Commun. 8 257
[18] Fu L, Hu D, Mendes R G, Rummeli M H, Dai Q, Wu B, Fu L and Liu Y 2018 ACS Nano 12 9405
[19] Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C D, Gan L Y, Liu J F, Xu H and Tong S Y 2017 Nanoscale 9 13112
[20] Wang Y, Li Y and Heine T 2018 J. Am. Chem. Soc. 140 12732
[21] Zhang X, Lai Z, Ma Q and Zhang H 2018 Chem. Soc. Rev. 47 3301
[22] Shi W, Li G and Wang Z 2019 J. Phys. Chem. C 123 12261
[23] Wu Q, Wei W, Lv X, Huang B and Dai Y 2019 J. Phys. Chem. C 123 11791
[24] Tao L, Zhang Y Y, Sun J, Du S and Gao H J 2018 Chin. Phys. B 27 076104
[25] Yang S Z, Gong Y, Manchanda P, Zhang Y Y, Ye G, Chen S, Song L, Pantelides S T, Ajayan P M, Chisholm M F and Zhou W 2018 Adv. Mater. 30 1803477
[26] Zhao X, Fu D, Ding Z, Zhang Y Y, Wan D, Tan S J R, Chen Z, Leng K, Dan J, Fu W, Geng D, Song P, Du Y, Venkatesan T, Pantelides S T, Pennycook S J, Zhou W and Loh K P 2018 Nano Lett. 18 482
[27] Tsai C, Chan K, Norskov J K and Abild-Pedersen F 2015 Surf. Sci. 640 133
[28] Wang H, Tsai C, Kong D, Chan K, Abild-Pedersen F, Norskov J K and Cui Y 2015 Nano Res. 8 566
[29] Li G, Zhang D, Qiao Q, Yu Y, Peterson D, Zafar A, Kumar R, Curtarolo S, Hunte F, Shannon S, Zhu Y, Yang W and Cao L 2016 J. Am. Chem. Soc. 138 16632
[30] Zhang Y, Chen X, Huang Y, Zhang C, Li F and Shu H 2017 J. Phys. Chem. C 121 1530
[31] Liu C, Dai Z, Zhang J, Jin Y, Li D and Sun C 2018 J. Phys. Chem. C 122 19051
[32] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100
[33] Hinnemann B, Moses P G, Bonde J, Jorgensen K P, Nielsen J H, Horch S, Chorkendorff I and Norskov J K 2005 J. Am. Chem. Soc. 127 5308
[34] Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F, Norskov J K and Zheng X 2016 Nat. Mater. 15 48
[35] Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W and Xie Y 2013 Adv. Mater. 25 5807
[36] Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A and Terrones M 2016 2D Materials 3 022002
[37] Gao J, Cheng Y, Tian T, Hu X, Zeng K, Zhang G and Zhang Y W 2017 ACS Omega 2 8640
[38] Politano A, Chiarello G, Kuo C N, Lue C S, Edla R, Torelli P, Pellegrini V and Boukhvalov D W 2018 Adv. Funct. Mater. 28 1706504
[39] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Stimming U 2005 J. Electrochem. Soc. 152 J23
[40] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Hafner J 2008 J. Comput. Chem. 29 2044
[43] Baroni S, Gironcoli S d, Corso A D and Giannozzi P 2001 Rewiews Mod. Phys. 73 515
[44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[45] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
[46] Cenzual K, Gelato L M, Penzo M and Parthe E 1990 Z. Kristallogr 193 217
[47] Rasmussen F A and Thygesen K S 2015 J. Phys. Chem. C 119 13169
[48] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
[49] Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G and Liu Z 2018 Nature 556 355
[50] Zhang Y Y, Mishra R, Pennycook T J, Borisevich A Y, Pennycook S J and Pantelides S T 2015 Adv. Mater. Interfaces 2 1500344
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!