INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction |
Bao Lei(雷宝)1, Yu-Yang Zhang(张余洋)1,2, Shi-Xuan Du(杜世萱)1,2,3 |
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention because of their unique properties and great potential in nano-technology applications. Great efforts have been devoted to fabrication of novel structured TMD monolayers by modifying their pristine structures at the atomic level. Here we propose an intriguing structured 1T-PtTe2 monolayer as hydrogen evolution reaction (HER) catalyst, namely, Pt4Te7, using first-principles calculations. It is found that Pt4Te7 is a stable monolayer material verified by the calculation of formation energy, phonon dispersion, and ab initio molecular dynamics simulations. Remarkably, the novel structured void-containing monolayer exhibits superior catalytic activity toward HER compared with the pristine one, with a Gibbs free energy very close to zero (less than 0.07 eV). These features indicate that Pt4Te7 monolayer is a high-performance HER catalyst with a high platinum utilization. These findings open new perspectives for the functionalization of 2D TMD materials at an atomic level and its application in HER catalysis.
|
Received: 05 January 2020
Revised: 25 February 2020
Accepted manuscript online:
|
PACS:
|
81.16.Hc
|
(Catalytic methods)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
14.60.Cd
|
(Electrons (including positrons))
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0202300, 2018YFA0305800, and 2019YFA0308500), the National Natural Science Foundation of China (Grant Nos. 61888102, 51872284, and 51922011), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000). |
Corresponding Authors:
Shi-Xuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱) Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction 2020 Chin. Phys. B 29 058104
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[3] |
Miro P, Audiffred M and Heine T 2014 Chem. Soc. Rev. 43 6537
|
[4] |
Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
|
[5] |
Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X and Gao H J 2018 Chin. Phys. B 27 086804
|
[6] |
Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J and Cai M Q 2018 Nanoscale 10 8677
|
[7] |
Liao C S, Zhao Q Q, Zhao Y Q, Yu Z L, Zhou H, He P B, Yang J L and Cai M Q 2019 J. Phys. Chem. Solids 135 109060
|
[8] |
Yang D J, Du Y H, Zhao Y Q, Yu Z L and Cai M Q 2019 Physica Status Solidi B 256 1800540
|
[9] |
Guo G Y and Liang W Y 1986 J. Phys. C: Solid State Phys. 19 995
|
[10] |
Dai D, Koo H J, Whangbo M H, Soulard C, Rocquefelte X and Jobic S 2003 J. Solid State Chem. 173 114
|
[11] |
Chia X, Adriano A, Lazar P, Sofer Z, Luxa J and Pumera M 2016 Adv. Funct. Mater. 26 4306
|
[12] |
Wang Y, Li L, Yao W, Song S, Sun J T, Pan J, Ren X, Li C, Okunishi E, Wang Y Q, Wang E, Shao Y, Zhang Y Y, Yang H-t, Schwier E F, Iwasawa H, Shimada K, Taniguchi M, Cheng Z, Zhou S, Du S, Pennycook S J, Pantelides S T and Gao H J 2015 Nano Lett. 15 4013
|
[13] |
Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater 28 2399
|
[14] |
Wang Z, Li Q, Besenbacher F and Dong M 2016 Adv. Mater. 28 10224
|
[15] |
Li L, Wang W, Chai Y, Li H, Tian M and Zhai T 2017 Adv. Funct. Mater. 27 1701011
|
[16] |
Yao W, Wang E, Huang H, Deng K, Yan M, Zhang K, Miyamoto K, Okuda T, Li L, Wang Y, Gao H, Liu C, Duan W and Zhou S 2017 Nat. Commun. 8 14216
|
[17] |
Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S, Duan W and Zhou S 2017 Nat Commun. 8 257
|
[18] |
Fu L, Hu D, Mendes R G, Rummeli M H, Dai Q, Wu B, Fu L and Liu Y 2018 ACS Nano 12 9405
|
[19] |
Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C D, Gan L Y, Liu J F, Xu H and Tong S Y 2017 Nanoscale 9 13112
|
[20] |
Wang Y, Li Y and Heine T 2018 J. Am. Chem. Soc. 140 12732
|
[21] |
Zhang X, Lai Z, Ma Q and Zhang H 2018 Chem. Soc. Rev. 47 3301
|
[22] |
Shi W, Li G and Wang Z 2019 J. Phys. Chem. C 123 12261
|
[23] |
Wu Q, Wei W, Lv X, Huang B and Dai Y 2019 J. Phys. Chem. C 123 11791
|
[24] |
Tao L, Zhang Y Y, Sun J, Du S and Gao H J 2018 Chin. Phys. B 27 076104
|
[25] |
Yang S Z, Gong Y, Manchanda P, Zhang Y Y, Ye G, Chen S, Song L, Pantelides S T, Ajayan P M, Chisholm M F and Zhou W 2018 Adv. Mater. 30 1803477
|
[26] |
Zhao X, Fu D, Ding Z, Zhang Y Y, Wan D, Tan S J R, Chen Z, Leng K, Dan J, Fu W, Geng D, Song P, Du Y, Venkatesan T, Pantelides S T, Pennycook S J, Zhou W and Loh K P 2018 Nano Lett. 18 482
|
[27] |
Tsai C, Chan K, Norskov J K and Abild-Pedersen F 2015 Surf. Sci. 640 133
|
[28] |
Wang H, Tsai C, Kong D, Chan K, Abild-Pedersen F, Norskov J K and Cui Y 2015 Nano Res. 8 566
|
[29] |
Li G, Zhang D, Qiao Q, Yu Y, Peterson D, Zafar A, Kumar R, Curtarolo S, Hunte F, Shannon S, Zhu Y, Yang W and Cao L 2016 J. Am. Chem. Soc. 138 16632
|
[30] |
Zhang Y, Chen X, Huang Y, Zhang C, Li F and Shu H 2017 J. Phys. Chem. C 121 1530
|
[31] |
Liu C, Dai Z, Zhang J, Jin Y, Li D and Sun C 2018 J. Phys. Chem. C 122 19051
|
[32] |
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100
|
[33] |
Hinnemann B, Moses P G, Bonde J, Jorgensen K P, Nielsen J H, Horch S, Chorkendorff I and Norskov J K 2005 J. Am. Chem. Soc. 127 5308
|
[34] |
Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F, Norskov J K and Zheng X 2016 Nat. Mater. 15 48
|
[35] |
Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W and Xie Y 2013 Adv. Mater. 25 5807
|
[36] |
Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A and Terrones M 2016 2D Materials 3 022002
|
[37] |
Gao J, Cheng Y, Tian T, Hu X, Zeng K, Zhang G and Zhang Y W 2017 ACS Omega 2 8640
|
[38] |
Politano A, Chiarello G, Kuo C N, Lue C S, Edla R, Torelli P, Pellegrini V and Boukhvalov D W 2018 Adv. Funct. Mater. 28 1706504
|
[39] |
Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Stimming U 2005 J. Electrochem. Soc. 152 J23
|
[40] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[41] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[42] |
Hafner J 2008 J. Comput. Chem. 29 2044
|
[43] |
Baroni S, Gironcoli S d, Corso A D and Giannozzi P 2001 Rewiews Mod. Phys. 73 515
|
[44] |
Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
|
[45] |
Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
|
[46] |
Cenzual K, Gelato L M, Penzo M and Parthe E 1990 Z. Kristallogr 193 217
|
[47] |
Rasmussen F A and Thygesen K S 2015 J. Phys. Chem. C 119 13169
|
[48] |
Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
|
[49] |
Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G and Liu Z 2018 Nature 556 355
|
[50] |
Zhang Y Y, Mishra R, Pennycook T J, Borisevich A Y, Pennycook S J and Pantelides S T 2015 Adv. Mater. Interfaces 2 1500344
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|