Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058103    DOI: 10.1088/1674-1056/ab7e93
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys

Qing-Jun Xu(徐庆君)1,2, Shi-Ying Zhang(张士英)1,2, Bin Liu(刘斌)1, Zhen-Hua Li(李振华)1,2, Tao Tao(陶涛)1, Zi-Li Xie(谢自力)1, Xiang-Qian Xiu(修向前)1, Dun-Jun Chen(陈敦军)1, Peng Chen(陈鹏)1, Ping Han(韩平)1, Ke Wang(王科)1, Rong Zhang(张荣)1, You-Liao Zheng(郑有炓)1
1 Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 College of Optoelectronics Engineering, Zaozhuang University, Zaozhuang 277160, China
Abstract  The Mg acceptor activation mechanism and hole transport characteristics in AlGaN alloy with Mg doping concentration (~ 1020 cm-3) grown by metal-organic chemical vapor deposition (MOCVD) are systematically studied through optical and electrical properties. Emission lines of shallow oxygen donors and (VIII complex)1- as well as VN3+ and neutral Mg acceptors are observed, which indicate that self-compensation is occurred in Mg-doped AlGaN at highly doping levels. The fitting of the temperature-dependent Hall effect data shows that the acceptor activation energy values in Mg-doped AlxGa1-xN (x=0.23, 0.35) are 172 meV and 242 meV, and the hole concentrations at room temperature are 1.2×1018 cm-3 and 3.3×1017 cm-3, respectively. Therefore, it is believed that there exists the combined effect of the Coulomb potentials of the dopants and screening of the Coulomb potentials by a high hole concentration. Moreover, due to the high ionized acceptors' concentration and compensation ratio, the impurity conduction becomes more prominent and the valence band mobility drops sharply at low temperature.
Keywords:  AlGaN      Mg doping      MOCVD      cathodo-luminescence      Hall measurement  
Received:  15 October 2019      Revised:  25 January 2020      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  82.33.Ya (Chemistry of MOCVD and other vapor deposition methods)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.60.Hk (Cathodoluminescence, ionoluminescence)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0403100 and 2017YFB0403101), the National Natural Science Foundation of China (Grant Nos. 61704149, 61674076, and 61605071), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BY2013077, BK20141320, and BE2015111), the Project of Science and Technology Development Program in Shandong Province, China (Grant Nos. 2013YD02054 and 2013YD02008), the Project of Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J13LN08), the Collaborative Innovation Center of Solid State Lighting and Energy-saving Electronics, Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Six-Talent Peaks Project of Jiangsu Province, China (Grant No. XYDXX-081), the Open Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2017KF03), the Project of Autonomous Innovation and Achievement Transformation Program in Zaozhuang City, China (Grant No. 2017GH3), the Overseas Study Program Funded by Shandong Provincial Government, China, the Laboratory Open Fund from Jiangsu Key Laboratory of Photoelectric Information Functional Materials, China, and the Doctoral Foundation Project of Zaozhuang University, China.
Corresponding Authors:  Bin Liu, Zi-Li Xie     E-mail:  bliu@nju.edu.cn;xzl@nju.edu.cn

Cite this article: 

Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓) Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys 2020 Chin. Phys. B 29 058103

[1] Wang L Y, Song W D, Hu W X, Li G, Luo X J, Wang H, Xiao J K, Guo J Q, Wang X F, Hao R, Yi H X, Wu Q B and Li S T 2019 Chin. Phys. B 28 018503
[2] Liu B, Zhang R, Xie Z L, Liu Q J, Zhang Z, Li Y, Xiu X Q, Yao J, Mei Q, Zhao H, Han P, Lu H, Chen P, Gu S L, Shi Y, Zheng Y D, Cheung W Y, Ke N and Xu J B 2008 J. Cryst. Growth 310 4499
[3] Zhang J P, Wu S, Rai S, Mandavilli V, Adivarahan V, Chitnis A, Shatalov M and Asif Khan M 2003 Appl. Phys. Lett. 83 3456
[4] Liang Y H and Towe E 2018 Appl. Phys. Rev. 5 011107
[5] Li D B, Jiang K, Sun X J and Guo C L 2018 Adv. Opt. Photon. 10 43
[6] Katsuragawa M, Sota S, Komori M, Anbe C, Takeuchi T, Sakai H, Amano H and Akasaki I 1998 J. Cryst. Growth 189/190 528
[7] Jiang H X and Lin J Y 2014 Semicond. Sci. Technol. 29 84003
[8] Kozodoy P, Xing H L, DenBaars S P, Mishra U K, Saxler A, Perrin R, Elhamri S and Mitchel W C 2000 J. Appl. Phys. 87 1832
[9] Schubert E F 1993 Doping in III-V Semiconductors (Cambridge: University Press)
[10] Stampfl C and Van de Walle C G 2002 Phys. Rev. B 65 155212
[11] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[12] Xu Q J, Liu B, Zhang S Y, Tao T, Dai J P, He G T, Xie Z L, Xiu X Q, Chen D J, Chen P, Han P and Zhang R 2017 Superlattice. Microst. 101 144
[13] Xu Q J, Zhang S Y, Liu B, Tao T, Xie Z L, Xiu X Q, Chen D J, Chen P, Han P, Zheng Y D and Zhang R 2018 Superlattice. Microst. 119 150
[14] Nepal N, Nakarmi M L, Nam K B, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 85 2271
[15] Gu C J, Stevie F A, Hitzman C J, Saripalli Y N, Johnson M and Griffis D P 2006 Appl. Surf. Sci. 252 7228
[16] Nepal N, Nakarmi M L, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 89 092107
[17] Taniyasu Y, Kasu M and Kobayashi N 2002 Appl. Phys. Lett. 81 1255
[18] Nakarmi M L, Kim K H, Zhu K, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 85 3769
[19] Feng Q, Wang F X and Hao Y 2004 Acta Phys. Sin. 53 3587 (in Chinese)
[20] Shahedipour F and Wessels B W 2000 Appl. Phys. Lett. 76 3011
[21] Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A, Santic B and Schlotter P 1998 Appl. Phys. Lett. 72 1326
[22] Kaufmann U, Kunzer M, Obloh H, Maier M, Manz Ch, Ramakrishnan A and Santic B 1999 Phys. Rev. B 59 5561
[23] Kwon Y H, Shee S K, Gainer G H, Park G H, Hwang S J and Song J J 2000 Appl. Phys. Lett. 76 840
[24] Reshchikov M A, Yi G C and Wessels B W 1999 Phys. Rev. B 59 13176
[25] Shahedipour F and Wessels B W 2001 MRS Internet J. Nitride Semicond. Res. 6 12
[26] Nakarmi M L, Nepal N, Ugolini C, Altahtamouni T M, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 89 152120
[27] Nakarmi M L, Nepal N, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 091903
[28] Simpkins B S, Pehrsson P E and Laracuente A R 2006 Appl. Phys. Lett. 88 072111
[29] Kinoshita T, Obata T, Yanagi H and Inoue S I 2013 Appl. Phys. Lett. 102 012105
[30] Gong Y, Gu Y, Kuskovsky Igor L, Neumark G F, Li J, Lin J Y, Jiang H X and Ferguson I 2004 Mat. Res. Soc. Symp. Proc. 798 Y5.16.1
[31] Suzuki M, Uenoyama T and Yamase A 1995 Phys. Rev. B 52 8132
[32] Götz W, Kern R S, Chen C H, Liu H, Steigerwald D A and Fletcher R M 1999 Mater. Sci. Eng. B 59 211
[33] Kumakura K, Makimoto T and Kobayashi N 2003 J. Appl. Phys. 93 3370
[34] Costato M, Gagliani G, Jacoboni C and Reggiani L 1974 J. Phys. Chem. Solids 35 1605
[35] Horita M, Takashima S, Tanaka R, Matsuyama H, Ueno K, Edo M, Takahashi T, Shimizu M and Suda J 2017 Jpn. J. Appl. Phys. 56 031001
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[7] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[8] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[9] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[10] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[11] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[12] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[13] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[14] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[15] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
No Suggested Reading articles found!