Special Issue:
SPECIAL TOPIC — Active matters physics
|
SPECIAL TOPIC—Active matters physics |
Prev
Next
|
|
|
Constraint dependence of average potential energy of a passive particle in an active bath |
Simin Ye(叶思敏)1,2, Peng Liu(刘鹏)1,2, Zixuan Wei(魏子轩)2, Fangfu Ye(叶方富)1,2,3,4, Mingcheng Yang(杨明成)1,2, Ke Chen(陈科)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China |
|
|
Abstract We quantify the mean potential energy of a passive colloidal particle harmonically confined in a bacterial solution using optical traps. We find that the average potential energy of the passive particle depends on the trap stiffness, in contrast to the equilibrium case where energy partition is independent of the external constraints. The constraint dependence of the mean potential energy originates from the fact that the persistent collisions between the passive particle and the active bacteria are influenced by the particle relaxation dynamics. Our experimental results are consistent with the Brownian dynamics simulations, and confirm the recent theoretical prediction.
|
Received: 08 January 2020
Revised: 27 February 2020
Accepted manuscript online:
|
PACS:
|
82.70.Dd
|
(Colloids)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
47.63.Gd
|
(Swimming microorganisms)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874397, 11674365, 11774393, and 11774394). |
Corresponding Authors:
Fangfu Ye, Mingcheng Yang, Ke Chen
E-mail: fye@iphy.ac.cn;mcyang@iphy.ac.cn;kechen@iphy.ac.cn
|
Cite this article:
Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科) Constraint dependence of average potential energy of a passive particle in an active bath 2020 Chin. Phys. B 29 058201
|
[1] |
Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323
|
[2] |
Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys. 85 1143
|
[3] |
Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F and Di Fabrizio E 2010 Proc. Natl. Acad. Sci. USA 107 9541
|
[4] |
Jiang H R, Yoshinaga N and Sano M 2010 Phys. Rev. Lett. 105 268302
|
[5] |
Maggi C, Saglimbeni F, Dipalo M, De Angelis F and Di Leonardo R 2015 Nat. Commun. 6 7855
|
[6] |
Palacci J, Sacanna S, Steinberg A P, Pine D J and Chaikin P M 2013 Science 339 936
|
[7] |
Catchmark J M, Subramanian S and Sen A 2005 Small 1 202
|
[8] |
Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E, Lammert P E and Crespi V H 2004 J. Am. Chem. Soc. 126 13424
|
[9] |
Gangwal S, Cayre O J, Bazant M Z and Velev O D 2008 Phys. Rev. Lett. 100 058302
|
[10] |
Theurkauff I, Cottin-bizonne C, Palacci J, Yber C and Bocquet L 2012 Phys. Rev. Lett. 108 268303
|
[11] |
Zhang H P, Be'er A, Florin E L and Swinney H L 2010 Proc. Natl. Acad. Sci. USA. 107 13626
|
[12] |
Wioland H, Woodhouse F G, Dunkel J, Kessler J O and Goldstein R E 2013 Phys. Rev. Lett. 110 268102
|
[13] |
Sokolov A and Aranson I S 2012 Phys. Rev. Lett. 109 248109
|
[14] |
Sokolov A, Aranson I S, Kessler J O and Goldstein R E 2007 Phys. Rev. Lett. 98 158102
|
[15] |
Yang M, Ripoll M and Chen K 2015 J. Chem. Phys. 142 054902
|
[16] |
Dey K K, Zhao X, Tansi B M, Méndez-Ortiz W J, Córdova-Figueroa U M, Golestanian R and Sen A 2015 Nano Lett. 15 8311
|
[17] |
Zong Y, Liu J, Liu R, Guo H, Yang M, Li Z and Chen K 2015 ACS Nano 9 10844
|
[18] |
Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
|
[19] |
Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78 056601
|
[20] |
Deblais A, Barois T, Guerin T, Delville P H, Vaudaine R, Lintuvuori J S, Boudet J F, Baret J C and Kellay H 2018 Phys. Rev. Lett. 120 188002
|
[21] |
Kokot G, Das S, Winkler R G, Gompper G, Aranson I S and Snezhko A 2017 Proc. Natl. Acad. Sci. USA 114 12870
|
[22] |
Bricard A, Caussin J B, Desreumaux N, Dauchot O and Bartolo D 2013 Nature 503 95
|
[23] |
Yan J, Han M, Zhang J, Xu C, Luijten E and Granick S 2016 Nat. Mater. 15 1095
|
[24] |
Massana-Cid H, Meng F, Matsunaga D, Golestanian R and Tierno P 2019 Nat. Commun. 10 2444
|
[25] |
Wensink H H, Dunkel J, Heidenreich S, Drescher K, Goldstein R E, Löwen H and Yeomans J M 2012 Proc. Natl. Acad. Sci. USA 109 14308
|
[26] |
Buttinoni I, BialkéJ, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett. 110 238301
|
[27] |
Cates M E and Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219
|
[28] |
Sesé-Sansa E, Pagonabarraga I and Levis D 2018 Europhys. Lett. 124 30004
|
[29] |
Angelani L, Maggi C, Bernardini M L, Rizzo A and Di Leonardo R 2011 Phys. Rev. Lett. 107 138302
|
[30] |
Ni R, Stuart M A C and Bolhuis P G 2015 Phys. Rev. Lett. 114 018302
|
[31] |
Yamchi M Z and Naji A 2017 J. Chem. Phys. 147 194901
|
[32] |
Ray D, Reichhardt C and Olson Reichhardt C J 2014 Phys. Rev. E 90 013019
|
[33] |
Dolai P, Simha A and Mishra S 2018 Soft Matter 14 6137
|
[34] |
Angelani L 2019 J. Phys.-Condes. Matter 31 075101
|
[35] |
Takatori S C and Brady J F 2015 Soft Matter 11 7920
|
[36] |
Stenhammar J, Wittkowski R, Marenduzzo D and Cates M E 2015 Phys. Rev. Lett. 114 018301
|
[37] |
Loi D, Mossa S and Cugliandolo L F 2008 Phys. Rev. E 77 051111
|
[38] |
Loi D, Mossa S and Cugliandolo L F 2011 Soft Matter 7 3726
|
[39] |
Bechinger C, Di Leolardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
|
[40] |
Peng Y, Lai L, Tai Y S, Zhang K, Xu X and Cheng X 2016 Phys. Rev. Lett. 116 068303
|
[41] |
Wu X L and Libchaber A 2000 Phys. Rev. Lett. 84 3017
|
[42] |
Maggi C, Paoluzzi M, Pellicciotta N, Lepore A, Angelani L and Di Leonardo R 2014 Phys. Rev. Lett. 113 238303
|
[43] |
Paine A J, Luymes W and McNulty J 1990 Macromolecules 23 3104
|
[44] |
Crocker J C and Grier D G 1996 J. Colloid Interface Sci. 179 298
|
[45] |
Krishnamurthy S, Ghosh S, Chatterji D, Ganapathy R and Sood A K 2016 Nat. Phys. 12 1134
|
[46] |
Argun A, Moradi A R, Pinçe E, Bagci G B, Imparato A and Volpe G 2016 Phys. Rev. E 94 062150
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|