CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer |
Mei Ge(葛梅)1, Qing Cai(蔡青)1, Bao-Hua Zhang(张保花)2, Dun-Jun Chen(陈敦军)1, Li-Qun Hu(胡立群)1, Jun-Jun Xue(薛俊俊)3, Hai Lu(陆海)1, Rong Zhang(张荣)1, You-Dou Zheng(郑有炓)1 |
1 The Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 Department of Physics, Changji College, Changji 831100, China; 3 School of Electronic Science and Engineering, Nanjign University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract We investigate the negative transconductance effect in p-GaN gate AlGaN/GaN high-electron-mobility transistor (HEMT) associated with traps in the unintentionally doped GaN buffer layer. We find that a negative transconductance effect occurs with increasing the trap concentration and capture cross section when calculating transfer characteristics. The electron tunneling through AlGaN barrier and the reduced electric field discrepancy between drain side and gate side induced by traps are reasonably explained by analyzing the band diagrams, output characteristics, and the electric field strength of the channel of the devices under different trap concentrations and capture cross sections.
|
Received: 06 May 2019
Revised: 20 August 2019
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0402900), the National Natural Science Foundation of China (Grant No. 61634002), the Scientific Research Foundation of Graduate School of Nanjing University, China (Grant No. 2016CL03), and the Key Project of Jiangsu Province, China (Grant No. BE2016174). |
Corresponding Authors:
Dun-Jun Chen
E-mail: djchen@nju.edu.cn
|
Cite this article:
Mei Ge(葛梅), Qing Cai(蔡青), Bao-Hua Zhang(张保花), Dun-Jun Chen(陈敦军), Li-Qun Hu(胡立群), Jun-Jun Xue(薛俊俊), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓) Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer 2019 Chin. Phys. B 28 107301
|
[1] |
Frayssinet E, Knap W, Lorenzini P, Grandjean N, Massies J, Skierbiszewki C, Suski T, Grzegory I, Porowski S, Simin G, Hu X, Shur M S, Gaska R and Maude D 2000 Appl. Phys. Lett. 77 2551
|
[2] |
Kuzuhara M and Tokuda H 2015 IEEE Trans. Electron. Dev. 62 405
|
[3] |
Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stuzmann M 2000 J. Appl. Phys. 87 334
|
[4] |
Su M, Chen C and Rajan S 2013 Semicond. Sci. Technol. 28 074012
|
[5] |
Ťapajna M, Hilt O, Bahat T E, Wiirfl J and Kuzmik J 2016 IEEE Electron Dev. Lett. 37 385
|
[6] |
Greco G, Iucolano F, Franco S D, Bongiorno C, Patti A and Roccaforte F 2016 IEEE Trans. Electron. Dev. 63 2735
|
[7] |
Su L Y, Lee F and Huang J J 2014 IEEE Trans. Electron. Dev. 61 460
|
[8] |
Rossetto I, Meneghini M, Hilt O, Bahat T E, Santi C D, Dalcanale S, Wuerfl J, Zanoni E, Meneghesso G 2016 IEEE Trans. Electron. Dev. 63 2334
|
[9] |
Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron. Dev. 48 560
|
[10] |
Tirado J M, Sánchez R J L and Izpura J I 2007 IEEE Trans. Electron. Dev. 54 410
|
[11] |
Heikman S, Keller S, DenBaars S P and Mishra U K 2002 Appl. Phys. Lett. 81 439
|
[12] |
Uren M J, Moreke J and Kuball M 2012 IEEE Trans. Electron. Dev. 59 3327
|
[13] |
Axelsson O, Gustafsson S, Hjelmgren H, Rorsman N, Blanck H, Splettstoesser J, Thorpe J, Roedle T and Thorsell M 2016 IEEE Trans. Electron. Dev. 63 326
|
[14] |
Ge M, Cai Q, Zhang B H, Chen D J, Hu L Q, Xue J J, Lu H, Zhang R and Zheng Y D 2018 Phys. Status Solidi A 215 1700368
|
[15] |
Nozu T and Obara M 1990 J. J. Appl. Phys. 29 2376
|
[16] |
Baek J and Shur M 1990 IEEE Trans. Electron. Dev. 37 1917
|
[17] |
Versari R and Ricco B 1999 IEEE Trans. Electron. Dev. 46 1189
|
[18] |
Liao C S and Hwu J G 2016 IEEE Trans. Electron. Dev. 63 2864
|
[19] |
Nourbakhsh A, Zubair A, Mildred S D and Palacios T 2016 Nano Lett. 16 1359
|
[20] |
Schlichenmaier C, Thranhardt A, Meier T, Koch S W, Chow W W, Hader J and Moloney J V 2005 Appl. Phys. Lett. 87 261109
|
[21] |
Guo B and Ravaioli U 2002 J. Comput. Electron. 1 309
|
[22] |
Albrecht J D, Wang R P, Ruden P P, Farahm, M and Brennan K F 1998 J. Appl. Phys. 83 4777
|
[23] |
Cai Q, Ge M, Xue J J, Hu L Q, Chen D J, Lu H, Zhang R and Zheng Y D 2017 IEEE Photon. J. 9 6803507
|
[24] |
Polyakov A Y and Lee I H 2015 Mater. Sci. Eng. R 94 1
|
[25] |
Erofeev E V, Kagadei V A, Kazimirov A I and Fedin I V 2015 International Siberian Conference on Control and Communications, May 21-23, 2015, Omsk, Russia
|
[26] |
Cho H K, Kim C S and Hong C H 2003 J. Appl. Phys. 94 1485
|
[27] |
Nagahama T, Santos T S and Moodera J S 2007 Phys. Rev. Lett. 99 016602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|