Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107301    DOI: 10.1088/1674-1056/ab3e00
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer

Mei Ge(葛梅)1, Qing Cai(蔡青)1, Bao-Hua Zhang(张保花)2, Dun-Jun Chen(陈敦军)1, Li-Qun Hu(胡立群)1, Jun-Jun Xue(薛俊俊)3, Hai Lu(陆海)1, Rong Zhang(张荣)1, You-Dou Zheng(郑有炓)1
1 The Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Department of Physics, Changji College, Changji 831100, China;
3 School of Electronic Science and Engineering, Nanjign University of Posts and Telecommunications, Nanjing 210023, China
Abstract  We investigate the negative transconductance effect in p-GaN gate AlGaN/GaN high-electron-mobility transistor (HEMT) associated with traps in the unintentionally doped GaN buffer layer. We find that a negative transconductance effect occurs with increasing the trap concentration and capture cross section when calculating transfer characteristics. The electron tunneling through AlGaN barrier and the reduced electric field discrepancy between drain side and gate side induced by traps are reasonably explained by analyzing the band diagrams, output characteristics, and the electric field strength of the channel of the devices under different trap concentrations and capture cross sections.
Keywords:  AlGaN/GaN      high-electron-mobility transistors (HEMTs)      traps      negative transconductance  
Received:  06 May 2019      Revised:  20 August 2019      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0402900), the National Natural Science Foundation of China (Grant No. 61634002), the Scientific Research Foundation of Graduate School of Nanjing University, China (Grant No. 2016CL03), and the Key Project of Jiangsu Province, China (Grant No. BE2016174).
Corresponding Authors:  Dun-Jun Chen     E-mail:  djchen@nju.edu.cn

Cite this article: 

Mei Ge(葛梅), Qing Cai(蔡青), Bao-Hua Zhang(张保花), Dun-Jun Chen(陈敦军), Li-Qun Hu(胡立群), Jun-Jun Xue(薛俊俊), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓) Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer 2019 Chin. Phys. B 28 107301

[1] Frayssinet E, Knap W, Lorenzini P, Grandjean N, Massies J, Skierbiszewki C, Suski T, Grzegory I, Porowski S, Simin G, Hu X, Shur M S, Gaska R and Maude D 2000 Appl. Phys. Lett. 77 2551
[2] Kuzuhara M and Tokuda H 2015 IEEE Trans. Electron. Dev. 62 405
[3] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stuzmann M 2000 J. Appl. Phys. 87 334
[4] Su M, Chen C and Rajan S 2013 Semicond. Sci. Technol. 28 074012
[5] Ťapajna M, Hilt O, Bahat T E, Wiirfl J and Kuzmik J 2016 IEEE Electron Dev. Lett. 37 385
[6] Greco G, Iucolano F, Franco S D, Bongiorno C, Patti A and Roccaforte F 2016 IEEE Trans. Electron. Dev. 63 2735
[7] Su L Y, Lee F and Huang J J 2014 IEEE Trans. Electron. Dev. 61 460
[8] Rossetto I, Meneghini M, Hilt O, Bahat T E, Santi C D, Dalcanale S, Wuerfl J, Zanoni E, Meneghesso G 2016 IEEE Trans. Electron. Dev. 63 2334
[9] Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron. Dev. 48 560
[10] Tirado J M, Sánchez R J L and Izpura J I 2007 IEEE Trans. Electron. Dev. 54 410
[11] Heikman S, Keller S, DenBaars S P and Mishra U K 2002 Appl. Phys. Lett. 81 439
[12] Uren M J, Moreke J and Kuball M 2012 IEEE Trans. Electron. Dev. 59 3327
[13] Axelsson O, Gustafsson S, Hjelmgren H, Rorsman N, Blanck H, Splettstoesser J, Thorpe J, Roedle T and Thorsell M 2016 IEEE Trans. Electron. Dev. 63 326
[14] Ge M, Cai Q, Zhang B H, Chen D J, Hu L Q, Xue J J, Lu H, Zhang R and Zheng Y D 2018 Phys. Status Solidi A 215 1700368
[15] Nozu T and Obara M 1990 J. J. Appl. Phys. 29 2376
[16] Baek J and Shur M 1990 IEEE Trans. Electron. Dev. 37 1917
[17] Versari R and Ricco B 1999 IEEE Trans. Electron. Dev. 46 1189
[18] Liao C S and Hwu J G 2016 IEEE Trans. Electron. Dev. 63 2864
[19] Nourbakhsh A, Zubair A, Mildred S D and Palacios T 2016 Nano Lett. 16 1359
[20] Schlichenmaier C, Thranhardt A, Meier T, Koch S W, Chow W W, Hader J and Moloney J V 2005 Appl. Phys. Lett. 87 261109
[21] Guo B and Ravaioli U 2002 J. Comput. Electron. 1 309
[22] Albrecht J D, Wang R P, Ruden P P, Farahm, M and Brennan K F 1998 J. Appl. Phys. 83 4777
[23] Cai Q, Ge M, Xue J J, Hu L Q, Chen D J, Lu H, Zhang R and Zheng Y D 2017 IEEE Photon. J. 9 6803507
[24] Polyakov A Y and Lee I H 2015 Mater. Sci. Eng. R 94 1
[25] Erofeev E V, Kagadei V A, Kazimirov A I and Fedin I V 2015 International Siberian Conference on Control and Communications, May 21-23, 2015, Omsk, Russia
[26] Cho H K, Kim C S and Hong C H 2003 J. Appl. Phys. 94 1485
[27] Nagahama T, Santos T S and Moodera J S 2007 Phys. Rev. Lett. 99 016602
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[5] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[10] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[11] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[12] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[13] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
[14] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[15] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
No Suggested Reading articles found!