INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Rectifying characteristics and solar-blind photoresponse in β-Ga2O3/ZnO heterojunctions |
Xiao-Fei Ma(马晓菲), Yuan-Qi Huang(黄元琪), Yu-Song Zhi(支钰崧), Xia Wang(王霞), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), Wei-Hua Tang(唐为华) |
State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Heterojunctions composed of β-Ga2O3 and ZnO films are fabricated on sapphire substrates by using the laser molecular beam epitaxy method. The heterojunction possesses excellent rectifying characteristics with an asymmetry ratio over 105. Prominent solar-blind photoresponse effect is also observed in the formed heterojunction. The photodetector exhibits a self-powered behavior with a fast response speed (rise time and decay time are 0.035 s and 0.032 s respectively) at zero bias. The obtained high performance can be related to the built-in field driven photogenerated electron-hole separation.
|
Received: 23 January 2019
Revised: 03 March 2019
Accepted manuscript online:
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
67.30.hr
|
(Films)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572033, 61774019, 61704153, and 11404029), the Fund from the State Key Laboratory of Information Photonics and Optical Communications (BUPT), China, and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Zhen-Ping Wu, Wei-Hua Tang
E-mail: zhenpingwu@bupt.edu.cn;whtang@bupt.edu.cn
|
Cite this article:
Xiao-Fei Ma(马晓菲), Yuan-Qi Huang(黄元琪), Yu-Song Zhi(支钰崧), Xia Wang(王霞), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), Wei-Hua Tang(唐为华) Rectifying characteristics and solar-blind photoresponse in β-Ga2O3/ZnO heterojunctions 2019 Chin. Phys. B 28 088503
|
[1] |
Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
|
[2] |
Guo D Y, Zhao X L, Zhi Y S, Cui W, Huang Y Q, An Y H, Li P G, Wu Z P and Tang W H 2016 Mater. Lett. 164 364
|
[3] |
Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P and Tang W H 2018 Appl. Opt. 57 538
|
[4] |
Pei J N, Jiang D Y, Tian C G, Guo Z X, Liu R S, Sun L, Qin J M, Hou J H, Zhao J X, Liang Q C and Gao S 2015 Acta Phys. Sin. 64 067802 (in Chinese)
|
[5] |
Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T and Wei W 2018 Acta Phys. Sin. 67 118502 (in Chinese)
|
[6] |
Li J J, Gao Z Y, Xue X W, Li H M, Deng J, Cui B F and Zou D S 2016 Acta Phys. Sin. 65 118104 (in Chinese)
|
[7] |
Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A and Fang X S 2015 Mater. Today 18 493
|
[8] |
Brown D M, Fedison J B, Hibshman J R, Kretchmer J W, Lombardo L, Matocha K S and Sandvik P M 2005 IEEE Sens. J. 5 983
|
[9] |
Vert A, Soloviev S and Sandvik P 2009 Phys. Status Solidi 206 2468
|
[10] |
Jiang H, Egawa T and Ishikawa H 2006 IEEE Photon. Technol. Lett. 18 1353
|
[11] |
Tut T, Gokkavas M, Inal A and Ozbay E 2007 Appl. Phys. Lett. 90 163506
|
[12] |
Zhang W, Xu J, Ye W, Li Y, Qi Z Q, Dai J N, Wu Z H, Chen C Q, Yin J, Li J, Jiang H and Fang Y Y 2015 Appl. Phys. Lett. 106 021112
|
[13] |
Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B and Lin Z 2011 Appl. Phys. Lett. 98 221112
|
[14] |
Fan M M, Liu K W, Chen X, Wang X, Zhang Z Z, Li B H and Shen D Z 2015 Acs Appl. Mater. Inter. 7 20600
|
[15] |
Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z P, Chen Z W and Tang W H 2017 J. Mater. Chem. C 5 10562
|
[16] |
Oshima T, Okuno T, Arai N, Suzuki N, Ohira S and Fujita S 2008 Appl. Phys. Express 1 011202
|
[17] |
Wu Z P, Bai G X, Qu Y Y, Guo D Y, Li L H, Li P G, Hao J H and Tang W H 2016 Appl. Phys. Lett. 108 211903
|
[18] |
Guo D, Wu Z, Li P, An Y, Han L, Guo X, Hui Y, Wang G, Sun C and Li L 2014 Opt. Mater. Express 4 1067
|
[19] |
Li Y, Tokizono T, Liao M, Miao Z, Koide Y, Yamada I and Delaunay J J 2010 Adv. Funct. Mater. 20 3972
|
[20] |
Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G and Tang W H 2018 Opt. Mater. Express 8 2918
|
[21] |
Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z and Tang W 2018 IEEE Photon. Technolnol. Lett. 30 993
|
[22] |
Liu, Z, Li, P G, Zhi, Y S, Wang, X L, Chu, X L and Tang W H 2019 Chin. Phys. B 28 017105
|
[23] |
Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 IEEE Electron. Dev. Lett. 34 493
|
[24] |
Fan P, Chettiar U K, Cao L, Afshinmanesh F, Engheta N and Brongersma M L 2012 Nat. Photon. 6 380
|
[25] |
Qu Y Y, Wu Z P, Ai M L, Guo D Y, An Y H, Yang H J, Li L H and Tang W H 2016 J. Alloy. Compd. 680 247
|
[26] |
An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L H and Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111
|
[27] |
Feng W, Wang X, Zhang J, Wang L, Zheng W, Hu P, Cao W and Yang B J 2014 J. Mater. Chem. C 2 3254
|
[28] |
Guo D Y, Su Y, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z W, Li C R and Tang W H 2018 ACS Nano 12 12827
|
[29] |
Guo D Y, Li P G, Chen Z W, Wu Z P and Tang W H 2019 Acta Phys. Sin. 68 078501 (in Chinese)
|
[30] |
Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136
|
[31] |
Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C and Tang W 2017 ACS Appl. Mater. Interfaces 9 1619
|
[32] |
Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F and Tang W H 2017 J. Mater. Chem. C 5 8688
|
[33] |
Zhao B, Fei W, Chen H, Wang Y, Jiang M, Fang X and Zhao D 2015 Nano Lett. 15 3988
|
[34] |
Zhang L, Li Q, Shang L, Zhang Z, Huang R and Zhao F J 2012 J. Phys. D: Appl. Phys. 45 485103
|
[35] |
Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|