INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors |
Chao-Yang Han(韩朝阳)1,2,3, Yuan Liu(刘远)2,3, Yu-Rong Liu(刘玉荣)1, Ya-Yi Chen(陈雅怡)1,2,3, Li Wang(王黎)1,2,3, Rong-Sheng Chen(陈荣盛)1 |
1 School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China; 2 School of Automation, Guangdong University of Technology, Guangzhou 510006, China; 3 Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, CEPREI, Guangzhou 510610, China |
|
|
Abstract The instability of p-channel low-temperature polycrystalline silicon thin film transistors (poly-Si TFTs) is investigated under negative gate bias stress (NBS) in this work. Firstly, a series of negative bias stress experiments is performed, the significant degradation behaviors in current-voltage characteristics are observed. As the stress voltage decreases from -25 V to -37 V, the threshold voltage and the sub-threshold swing each show a continuous shift, which is induced by gate oxide trapped charges or interface state. Furthermore, low frequency noise (LFN) values in poly-Si TFTs are measured before and after negative bias stress. The flat-band voltage spectral density is extracted, and the trap concentration located near the Si/SiO2 interface is also calculated. Finally, the degradation mechanism is discussed based on the current-voltage and LFN results in poly-Si TFTs under NBS, finding out that Si-OH bonds may be broken and form Si* and negative charge OH- under negative bias stress, which is demonstrated by the proposed negative charge generation model.
|
Received: 24 January 2019
Revised: 17 May 2019
Accepted manuscript online:
|
PACS:
|
85.30.Tv
|
(Field effect devices)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.40.Qx
|
(Microcircuit quality, noise, performance, and failure analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61574048), the Pearl River Science and Technology Nova Program of Guangzhou City, China (Grant No. 201710010172), the International Science and Technology Cooperation Program of Guangzhou City (Grant No. 201807010006), the International Cooperation Program of Guangdong Province, China (Grant No. 2018A050506044), and the Opening Fund of Key Laboratory of Silicon Device Technology, China (Grant No. KLSDTJJ2018-6). |
Corresponding Authors:
Yuan Liu
E-mail: eeliuyuan@gdut.edu.cn
|
Cite this article:
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛) Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors 2019 Chin. Phys. B 28 088502
|
[38] |
Liu Y, Chen R S, Li B, En Y F and Chen Y Q 2018 IEEE Trans. Electron. Dev. 65 356
|
[1] |
Maiolo L, Pecora A, Maita F, Minotti A, Zampetti E, Pantalei S, Macagnano A, Bearzotti A, Ricci D and Fortunato G 2013 Sen. Actuators B 179 114
|
[2] |
Fortunato E, Barquinha P and Martins R 2012 Adv. Mater. 24 2945
|
[3] |
Ho C, Panagopoulos G and Roy K 2013 IEEE Trans. Electron. Dev. 60 288
|
[4] |
Yan B, Yang J, Xia Z, Liu X, Du G, Han R, Kang J, Liao C C, Gan Z, Liao M, Wang J P and Wong W 2008 IEEE T. Nanotechnol. 7 418
|
[5] |
Zhou D, Wang M and Zhang S 2011 IEEE Trans. Electron. Dev. 58 3422
|
[6] |
Tai Y H, Chiu H L and Chou L S 2013 J. Disp. Technol. 9 613
|
[7] |
Chang G W, Chang T C, Jhu J C, Tsai T M, Chang K C, Syu Y E, Tai Y H, Jian F Y and Hung Y C 2014 IEEE Trans. Electron. Dev. 61 2119
|
[8] |
Son K S, Kim H S, Maeng W J, Lee K H, Kim T S, Park J S, Kwon J Y, Koo B and Lee S Y 2011 IEEE Electron. Dev. Lett. 32 164
|
[9] |
Mishra R, Mitra S and Gauthier R 2008 IEEE Electron. Dev. Lett. 29 262
|
[10] |
Jo M, Chang M, Kim S, Jung S, Park J B, Lee J, Seong D J and Hwang H 2009 IEEE Electron. Dev. Lett. 30 1194
|
[11] |
Zhou J, Wang M and Wong M 2011 IEEE Trans. Electron. Dev. 58 3034
|
[12] |
Cho E N, Kang J H, Kim C E and Moon P 2011 IEEE Trans. Dev. Mater. Reliab. 11 112
|
[13] |
Ma M W, Chen C Y, Wu W C, Su C J, Kao K H, Chao T S and Lei T F 2008 IEEE Trans. Electron. Dev. 55 1153
|
[14] |
Wang R S, Huang R, He Y D, Wang Z H, Jia G S, Kim W D, Park D G and Wang Y Y 2008 IEEE Electron. Dev. Lett. 29 242
|
[15] |
Xiong N, Xiao P, Li M, Xu H, Yao R H, Wen S S and Peng J B 2013 Appl. Phys. Lett. 102 242102
|
[16] |
Hu H H, Jheng Y R, Wu Y C, Hung M F and Huang G W 2012 IEEE Electron. Dev. Lett. 33 1276
|
[17] |
Pichon L, Boukhenoufa A, Cordier C and Cretu B 2007 IEEE Electron. Dev. Lett. 28 716
|
[18] |
Liu Y, He H Y, Chen R S, En Y F, Li B and Chen Y Q 2018 IEEE J. Electron Dev. Soc. 6 271
|
[19] |
Liu Y, He H Y, Chen Y Y, Chen R, Wang L and Cai S T 2019 IEEE Trans. Electron Dev. 66 2192
|
[20] |
Hu C F, Wang M X, Zhang B and Wong M 2009 IEEE Trans. Electron. Dev. 56 587
|
[21] |
Chen C Y, Lee J W, Wang S D, Shieh, M S, Lee P H, Chen W C, Lin H Y, Yeh K L and Lei T F 2006 IEEE Trans. Electron. Dev. 53 2993
|
[22] |
Maeda S, Maegawa S, Ipposhi T, Nishimura H, Ichiki T, Mitsuhashi J, Ashida M, Muragishi T, Inou, Y and Nishimura T 1994 J. Appl. Phys. 76 8160
|
[23] |
Gleskova H and Wagner S 2001 IEEE Trans. Electron. Dev. 48 1667
|
[24] |
Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E and Paillet P 2008 IEEE Trans. Nucl. Sci. 55 1833
|
[25] |
Liu Y, Chen H B, Liu Y R, Wang X, En Y F, Li B and Lu Y D 2015 Chin. Phys. B 24 088503
|
[26] |
Doremus R H 1976 J. Phys. Chem. 80 1773
|
[27] |
Yamamoto T, Uwasawa K and Mogami T 1999 IEEE Trans. Electron. Dev. 46 921
|
[28] |
Ristić G S, Pejović M M and Jakšić A B 2000 J. Appl. Phys. 87 3468
|
[29] |
Wang L, Liu Y, Geng K W, Chen Y Y and En Y F 2018 Chin. Phys. B 27 068504
|
[30] |
Hooge F N 1994 IEEE Trans. Electron. Dev. 41 1926
|
[31] |
McWhorter A L, Meyer J W and Strum P D 1957 Phys. Rev. 108 1642
|
[32] |
Ghibaudo G, Roux O 1991 Phys. Status Solidi A 124 571
|
[33] |
Dimitriadis C A, Kamarinos G and Brini J 2001 IEEE Electron. Dev. Lett. 22 381
|
[34] |
Wang M X and Wang M 2014 IEEE Trans. Electron Dev. 61 3258
|
[35] |
Jomaah J and Balestra F 2004 Proc. Inst. Elect. Eng.-Circuits Devices Syst. 151 111
|
[36] |
Ioannidis E G, Tsormpatzoglou A, Tassis D H, Dimitriadis C A, Templier F and Kamarinos G 2010 J. Appl. Phys. 108 106103
|
[37] |
Liu Y, Cai S T, Han C Y, Chen Y Y, Wang L, Xiong X M and Chen R S 2019 IEEE J. Electron. Dev. Soc. 7 203
|
[38] |
Liu Y, Chen R S, Li B, En Y F and Chen Y Q 2018 IEEE Trans. Electron. Dev. 65 356
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|