Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 088504    DOI: 10.1088/1674-1056/28/8/088504
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
INVITED REVIEW Prev   Next  

Spin transport in antiferromagnetic insulators

Zhiyong Qiu(邱志勇)1, Dazhi Hou(侯达之)2
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023, China;
2 WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Abstract  Electrical spin, which is the key element of spintronics, has been regarded as a powerful substitute for the electrical charge in the next generation of information technology, in which spin plays the role of the carrier of information and/or energy in a similar way to the electrical charge in electronics. Spin-transport phenomena in different materials are central topics of spintronics. Unlike electrical charge, spin transport does not depend on electron motion, particularly spin can be transported in insulators without accompanying Joule heating. Therefore, insulators are considered to be ideal materials for spin conductors, in which magnetic insulators are the most compelling systems. Recently, we experimentally studied and theoretically discussed spin transport in various antiferromagnetic systems and identified spin susceptibility and the Néel vector as the most important factors for spin transport in antiferromagnetic systems. Herein, we summarize our experimental results, physical nature, and puzzles unknown. Further challenges and potential applications are also discussed.
Keywords:  spintronics      spin wave      antiferromagnetics      spin transport  
Received:  15 March 2019      Revised:  09 June 2019      Accepted manuscript online: 
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.50.Ee (Antiferromagnetics)  
  75.76.+j (Spin transport effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874098), LiaoNing Revitalization Talents Program (Grant No. XLYC1807156), and the Fundamental Research Funds for the Central Universities (Grant No. DUT17RC(3)073).
Corresponding Authors:  Zhiyong Qiu     E-mail:  qiuzy@dlut.edu.cn

Cite this article: 

Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之) Spin transport in antiferromagnetic insulators 2019 Chin. Phys. B 28 088504

[1] Baibich M N, Broto J M, Fert Z, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas A 1988 Phys. Rev. Lett. 61 2472
[2] Binasch G, Grünberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828
[3] Wolf S A, Chtchelkanova A Y, and Treger D M 2006 IBM J. Res. Dev. 50 101
[4] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[5] Maekawa S 2006 Concept in Spin Electronics (Oxford University Press)
[6] Žutić I and Das S S 2004 Rev. Mod. Phys. 76 323
[7] Wang H, Du C, Hammel P and Yang F 2014 Phys. Rev. Lett. 113 097202
[8] Hahn C, De Loubens G, Naletov V V, Ben Youssef J, Klein O and Viret M 2014 Europhys. Lett. 108 57005
[9] Moriyama T, Takei S, Nagata M, Yoshimura Y, Matsuzaki N, Terashima T, Tserkovnyak Y and Ono T 2015 Appl. Phys. Lett. 106 162406
[10] Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Appl. Phys. Lett. 88 182509
[11] Qiu Z, Li J, Hou D, Arenholz E, N'Diaye A T, Tan A, Uchida K, Sato K, Okamoto S and Tserkovnyak Y 2016 Nat. Commun. 7 12670
[12] Qiu Z, Hou D, Barker J, Yamamoto K, Gomonay O and Saitoh E 2018 Nat. Mater. 17 577
[13] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[14] Xiao J, Bauer G E W, Uchida K, Saitoh E and Maekawa S 2010 Phys. Rev. B 81 214418
[15] Thole B T, Van D L G, and Sawatzky G 1985 Phys. Rev. Lett. 55 2086
[16] Van Der Laan G, Thole B T, Sawatzky G, Goedkoop J B, Fuggle J C, Esteva J M, Karnatak R, Remeika J P and Dabkowska H 1986 Phys. Rev. B 34 6529
[17] Li J, Tan A, Ma S, Yang R F, Arenholz E, Hwang C and Qiu Z 2014 Phys. Rev. Lett. 113 147207
[18] Singer J R 1956 Phys. Rev. 104 929
[19] Chikazumi S 2009 Physics of Ferromagnetism 2e (Oxford University Press)
[20] Ambrose T and Chien C 1996 Phys. Rev. Lett. 76 1743
[21] Borchers J, Carey M, Berkowitz A, Erwin R and Majkrzak C 1993 J. Appl. Phys. 73 6898
[22] Okamoto S 2016 Phys. Rev. B 93 064421
[23] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
[24] Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T and Saitoh E 2014 J. Phys.: Condens. Matter 26 343202
[25] Qiu Z, Hou D, Uchida K and Saitoh E 2015 J. Phys. D: Appl. Phys. 48 164013
[26] Kikkawa T, Uchida K, Daimon S, Qiu Z, Shiomi Y and Saitoh E 2015 Phys. Rev. B 92 064413
[27] Tobia D, Winkler E, Zysler R D, Granada M and Troiani H E 2008 Phys. Rev. B 78 104412
[28] Pati S P, Al-Mahdawi M, Ye S, Shiokawa Y, Nozaki T and Sahashi M 2016 Phys. Rev. B 94 224417
[29] Wu S M, Pearson J E and Bhattacharya A 2015 Phys. Rev. Lett. 114 186602
[30] Wang H, Du C, Hammel P C and Yang F 2015 Phys. Rev. B 91 220410
[31] Kim S K, Tserkovnyak Y and Tchernyshyov O 2014 Phys. Rev. B 90 104406
[32] Foner S 1963 Phys. Rev. 130 183
[33] Ramirez A P 1997 J. Phys.: Condens. Matter 9 8171
[34] Tokura Y 2006 Rep. Prog. Phys. 69 797
[35] Nagamiya T, Yosida K and Kubo R 1955 Adv. Phys. 4 1
[36] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[1] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[2] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[3] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[4] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[5] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[6] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[7] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[8] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[9] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[10] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[11] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[12] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[13] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[14] Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure
Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2021, 30(11): 117502.
[15] Influence of thickness on current-induced magnetization switching in L10-FePt single layer
Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇). Chin. Phys. B, 2021, 30(10): 107101.
No Suggested Reading articles found!