Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037301    DOI: 10.1088/1674-1056/28/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study

Xin He(贺欣)1,2, Ji-Biao Li(李佶彪)3
1 School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China;
2 Dazhou Industrial Technology Institute of Intelligent Manufacturing, Dazhou 635000, China;
3 Chongqing Key Laboratory Bond Engineering and Advanced Materials Technology(EBEAM), Yangtze Normal University, Chongqing 408100, China
Abstract  

Using first-principles calculations based on density functional theory (DFT), the structural and electronic properties of hydrogenated antimonene have been systematically investigated. Phonon dispersion and molecular dynamics (MD) simulation reveal that fully hydrogenated (FH) antimonene has high dynamic stability and could be synthesized. A new σ-type Dirac cone related to Sb-px,y orbitals is found in FH antimonene, which is robust to tensile strain. Noticeably, the spin orbital coupling (SOC) opens a quantum spin Hall (QSH) gap of 425 meV at the Dirac cone, sufficiently large for practical applications at room temperature. Semi-hydrogenated antimonene is a non-magnetic metal. Our results show that FH antimonene may have great potential applications in next generation high-performance devices.

Keywords:  antimonene      Dirac cone      quantum spin Hall (QSH) insulator      hydrogenated      first-principles calculations  
Received:  10 September 2018      Revised:  15 January 2019      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Mq (Elemental semiconductors)  
Fund: 

Project supported by Research Funds of Sichuan University of Arts and Science, China (Grant No. 2012Z009Y).

Corresponding Authors:  Xin He     E-mail:  18398818113@163.com

Cite this article: 

Xin He(贺欣), Ji-Biao Li(李佶彪) Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study 2019 Chin. Phys. B 28 037301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Balendhran S, Walia S, Nili H, Sriram S and Bhaskaran M 2015 Small 11 640
[4] Saxena S, Chaudhary R P and Shukla S 2016 Sci. Rep. 6 31073
[5] Pan J, Guo C G, Song C S, Lai X F, Li H, Zhao W, Zhang H, Mu G, Bu K J, Lin T Q, Xie X M, Chen M W and Huang F Q 2017 J. Am. Chem. Soc. 139 4623
[6] Wang F Q, Zhang S H, Yu J B and Wang Q 2015 Nanoscale 7 15962
[7] Pumera M 2011 Energy Environ. Sci. 4 668
[8] Liu Y X, Dong X C and Chen P 2012 Chem. Soc. Rev. 41 2283
[9] Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. 127 3155
[10] Castellanos-Gomez A, Roldán R, Cappelluti E, Buscema M, Guinea F, van der Zant H S J and Steele G A 2013 Nano Lett. 13 5361
[11] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenscholögl U 2013 Phy. Rev. B 87 100401(R)
[12] Wang J Z, Yang T, Zhang Z D and Yang L 2018 Appl. Phys. Lett. 112 213104
[13] Tang Q, Zhou Z and Chen Z F 2013 Nanoscale 5 4541
[14] Liu Q H, Zhang X W, Abdalla L B, Fazzio A and Zunger A 2015 Nano Lett. 15 1222
[15] Zhang S L, Hu Y H, Hu Z Y, Cai B and Zeng H B 2015 Appl. Phys. Lett. 107 022102
[16] Tang W C, Sun M L, Ren Q Q, Wang S K and Yu J 2016 Appl. Surf. Sci. 376 286
[17] Yuan J H, Xie Q X, Yu N N and Wang J F 2017 Appl. Surf. Sci. 394 625
[18] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys: Condens. Matter 21 395502
[19] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys: Condens. Matter 29 465901
[20] Hamann D R, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[21] Dal Corso A and Conte A M 2005 Phys. Rev. B 71 115106
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[25] Kunc K and Martin R M 1982 Phys. Rev. Lett. 48 406
[26] Wang X Q, Li H D and Wang J T 2012 Phys. Chem. Chem. Phys. 14 3031
[27] Li S S and Zhang C W 2016 Mater. Chem. Phys. 173 246
[28] Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Adv. Mater. 28 6332
[29] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[30] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[31] Zhang Q Y and Schwingenschlögl U 2016 Phys. Rev. B 93 045312
[32] Fu B T, Ge Y F, Su W Y, Guo W and Liu C C 2016 Sci. Rep. 6 30003
[33] Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[34] Si C, Liu J W, Xu Y, Wu J, Gu B L and Duan W H 2014 Phys. Rev. B 89 115429
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!