Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037302    DOI: 10.1088/1674-1056/28/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing

Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况)
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  

The physical mechanisms of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures by laser annealing and rapid thermal annealing are systematically investigated. The microstructures indicate that a better surface morphology and an intact contact interface are formed after laser annealing. None of the TiN alloy spikes are formed at the interface of the laser annealing sample. The experimental results show that the current transport mechanism through the ohmic contact after laser annealing is different from the conventional spike mechanism, and it is dominated by thermionic field emission.

Keywords:  gallium nitride      ohmic contacts      laser annealing      current transport mechanism  
Received:  20 November 2018      Revised:  15 January 2019      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: 

Projects supported by the National Natural Science Foundation of China (Grant Nos. 51577169 and 51777187) and the National Key Research and Development Program of China (Grant No. 2017YFB0402804).

Corresponding Authors:  Gang Xie     E-mail:  xielyz@zju.edu.cn

Cite this article: 

Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况) Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing 2019 Chin. Phys. B 28 037302

[1] Umesh K M, Shen L K, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
[2] Lim J H, Kim J J and Yang J W 2015 Microelectron. Reliab. 55 2565
[3] Fay M W, Han Y, Brown P D, Harrison I, Hilton K P, Munday A, Wallis D, Balmer R S, Uren M J and Martin T 2008 J. Appl. Phys. 103 074501
[4] Chen J, Ivey D G, Bardwell J, Liu Y, Tang H and Webb J B 2002 J. Vac. Sci. & Technol. A 20 1004
[5] Wang L, Mohammed F M and Adesida I 2007 J. Appl. Phys. 101 013702
[6] Zhang T, Pu T F, Xie T, Li L A, Bu Y Y, Wang X and Ao J P 2018 Chin. Phys. B 27 078503
[7] Liu Y, Lin Z J, Lv Y J, Cui P, Fu C, Han R L, Huo Y and Yang M 2017 Chin. Phys. B 26 097104
[8] Cui P, Lin Z J, Fu C, Liu Y and Lv Y J 2017 Chin. Phys. B 26 127102
[9] Yang L, Zhou X W, Ma X H, Lv L, Cao Y R, Zhang J C and Hao Y 2017 Chin. Phys. B 26 017304
[10] Iucolano F, Greco G and Roccaforte F 2013 Appl. Phys. Lett. 103 201604
[11] Zhang J H, Huang S, Bao Q L, Wang X H, Wei K, Zheng Y K, Li Y K, Zhao C, Liu X, Zhou Q, Chen W J and Zhang B 2015 Appl. Phys. Lett. 107 262109
[12] Greco G, Iucolano F and Roccaforte F 2016 Appl. Surf. Sci. 383 324
[13] Whiting P G, Rudawski N G, Holzworth M R, Pearton S J, Jones K S, Liu L, Kang T S and Ren F 2017 Microelectron. Reliab. 70 41
[14] Graff A, Simon-Najasek M, Altmann F, Kuzmik J, Gregušová D, Haščík Š, Jung H, Baur T, Grünenpütt J and Blanck H 2017 Microelectron. Reliab. 76-77 338
[15] Wang L, Zhang J Q, Li L A, Maeda Y T and Ao J P 2017 Chin. Phys. B 26 037201
[16] Lian Y W, Lin Y S, Lu H C, Huang Y C and Hsu S S H 2012 IEEE Electron Device Lett. 33 973
[17] Tang C, Xie G and Sheng K 2015 Microelectron. Reliab. 55 347
[18] Pooth A, Bergsten J, Rorsman N, Hirshy H, Perks R, Tasker P, Martin T, Webster R F, Cherns D, Uren M J and Kuball M 2017 Microelectron. Reliab. 68 2
[19] Gong R M, Wang J Y, Liu S H, Dong Z H, Yu M, Wen C P, Cai Y and Zhang B S 2010 Appl. Phys. Lett. 97 062115
[20] Tsou C W, Kang H C, Lian Y W and Hsu S S H 2016 IEEE Trans. Electron. Devices 63 4218
[21] Tzou A J, Hsieh D H, Chen S H, Li Z Y, Chang C Y and Kuo H C 2016 Semicond. Sci. Technol. 31 055003
[22] Ferreyra R A, Suzuki A, Kazumoto T and Ueda D 2017 IEEE Electron Device Lett. 38 1079
[23] Hou M C, Xie G and Sheng K 2018 IEEE Electron Device Lett. 39 1137
[24] Schmid A, Schroeter C, Otto R, Schuster M, Klemm V, Rafaja D and Heitmann J 2015 Appl. Phys. Lett. 106 053509
[25] Piazza M, Dua C, Oualli M, Morvan E, Carisetti D and Wyczisk F 2009 Microelectron. Reliab. 49 1222
[26] Greco G, Giannazzo F, Iucolano F, Nigro R L and Roccaforte F 2013 J. Appl. Phys. 114 083717
[27] Schroder D K 2006 Semiconductor Material and Device Characterization (3rd edn.) (Hoboken: John Wiley & Sons) p. 133
[28] Liu Z H, Arulkumaran S and Ng G I 2009 Appl. Phys. Lett. 94 142105
[29] Iucolano F, Roccaforte F, Alberti A, Bongiorno C, Franco S D and Raineri V 2006 J. Appl. Phys. 100 123706
[30] Upadhyay P, Meer M, Takhar K, Khachariya D, Kumar S A, Banerjee D, Ganguly S, Laha A and Saha D 2015 Phys. Status Solidi B 252 989
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[3] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[4] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[5] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[6] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[7] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[8] Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(3): 037201.
[9] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), and Yang Liu (刘扬)†. Chin. Phys. B, 2020, 29(10): 107201.
[10] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[11] Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures
Zhi-Feng Tian(田志锋), Peng Xu(徐鹏), Yao Yu(余耀), Jian-Dong Sun(孙建东), Wei Feng(冯伟), Qing-Feng Ding(丁青峰), Zhan-Wei Meng(孟占伟), Xiang Li(李想), Jin-Hua Cai(蔡金华), Zhong-Xin Zheng(郑中信), Xin-Xing Li(李欣幸), Lin Jin(靳琳), Hua Qin(秦华), Yun-Fei Sun(孙云飞). Chin. Phys. B, 2019, 28(5): 058501.
[12] PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces
San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和). Chin. Phys. B, 2019, 28(2): 026801.
[13] Improved carrier injection and confinement in InGaN light-emitting diodes containing GaN/AlGaN/GaN triangular barriers
Li-Wen Cheng(程立文), Jian Ma(马剑), Chang-Rui Cao(曹常锐), Zuo-Zheng Xu(徐作政), Tian Lan(兰天), Jin-Peng Yang(杨金彭), Hai-Tao Chen(陈海涛), Hong-Yan Yu(于洪岩), Shu-Dong Wu(吴曙东), Shun Yao(尧舜), Xiang-Hua Zeng(曾祥华), Zai-Quan Xu(徐仔全). Chin. Phys. B, 2018, 27(8): 088504.
[14] Improved performance of Ge n+/p diode by combining laser annealing and epitaxial Si passivation
Chen Wang(王尘), Yihong Xu(许怡红), Cheng Li(李成), Haijun Lin(林海军). Chin. Phys. B, 2018, 27(1): 018502.
[15] Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate
Lu Zhang(张璐), Hai-Yang Hong(洪海洋), Yi-Sen Wang(王一森), Cheng Li(李成), Guang-Yang Lin(林光杨), Song-Yan Chen(陈松岩), Wei Huang(黄巍), Jian-Yuan Wang(汪建元). Chin. Phys. B, 2017, 26(11): 116802.
No Suggested Reading articles found!