CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing |
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况) |
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The physical mechanisms of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures by laser annealing and rapid thermal annealing are systematically investigated. The microstructures indicate that a better surface morphology and an intact contact interface are formed after laser annealing. None of the TiN alloy spikes are formed at the interface of the laser annealing sample. The experimental results show that the current transport mechanism through the ohmic contact after laser annealing is different from the conventional spike mechanism, and it is dominated by thermionic field emission.
|
Received: 20 November 2018
Revised: 15 January 2019
Accepted manuscript online:
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
81.40.Rs
|
(Electrical and magnetic properties related to treatment conditions)
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 51577169 and 51777187) and the National Key Research and Development Program of China (Grant No. 2017YFB0402804). |
Corresponding Authors:
Gang Xie
E-mail: xielyz@zju.edu.cn
|
Cite this article:
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况) Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing 2019 Chin. Phys. B 28 037302
|
[1] |
Umesh K M, Shen L K, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
|
[2] |
Lim J H, Kim J J and Yang J W 2015 Microelectron. Reliab. 55 2565
|
[3] |
Fay M W, Han Y, Brown P D, Harrison I, Hilton K P, Munday A, Wallis D, Balmer R S, Uren M J and Martin T 2008 J. Appl. Phys. 103 074501
|
[4] |
Chen J, Ivey D G, Bardwell J, Liu Y, Tang H and Webb J B 2002 J. Vac. Sci. & Technol. A 20 1004
|
[5] |
Wang L, Mohammed F M and Adesida I 2007 J. Appl. Phys. 101 013702
|
[6] |
Zhang T, Pu T F, Xie T, Li L A, Bu Y Y, Wang X and Ao J P 2018 Chin. Phys. B 27 078503
|
[7] |
Liu Y, Lin Z J, Lv Y J, Cui P, Fu C, Han R L, Huo Y and Yang M 2017 Chin. Phys. B 26 097104
|
[8] |
Cui P, Lin Z J, Fu C, Liu Y and Lv Y J 2017 Chin. Phys. B 26 127102
|
[9] |
Yang L, Zhou X W, Ma X H, Lv L, Cao Y R, Zhang J C and Hao Y 2017 Chin. Phys. B 26 017304
|
[10] |
Iucolano F, Greco G and Roccaforte F 2013 Appl. Phys. Lett. 103 201604
|
[11] |
Zhang J H, Huang S, Bao Q L, Wang X H, Wei K, Zheng Y K, Li Y K, Zhao C, Liu X, Zhou Q, Chen W J and Zhang B 2015 Appl. Phys. Lett. 107 262109
|
[12] |
Greco G, Iucolano F and Roccaforte F 2016 Appl. Surf. Sci. 383 324
|
[13] |
Whiting P G, Rudawski N G, Holzworth M R, Pearton S J, Jones K S, Liu L, Kang T S and Ren F 2017 Microelectron. Reliab. 70 41
|
[14] |
Graff A, Simon-Najasek M, Altmann F, Kuzmik J, Gregušová D, Haščík Š, Jung H, Baur T, Grünenpütt J and Blanck H 2017 Microelectron. Reliab. 76-77 338
|
[15] |
Wang L, Zhang J Q, Li L A, Maeda Y T and Ao J P 2017 Chin. Phys. B 26 037201
|
[16] |
Lian Y W, Lin Y S, Lu H C, Huang Y C and Hsu S S H 2012 IEEE Electron Device Lett. 33 973
|
[17] |
Tang C, Xie G and Sheng K 2015 Microelectron. Reliab. 55 347
|
[18] |
Pooth A, Bergsten J, Rorsman N, Hirshy H, Perks R, Tasker P, Martin T, Webster R F, Cherns D, Uren M J and Kuball M 2017 Microelectron. Reliab. 68 2
|
[19] |
Gong R M, Wang J Y, Liu S H, Dong Z H, Yu M, Wen C P, Cai Y and Zhang B S 2010 Appl. Phys. Lett. 97 062115
|
[20] |
Tsou C W, Kang H C, Lian Y W and Hsu S S H 2016 IEEE Trans. Electron. Devices 63 4218
|
[21] |
Tzou A J, Hsieh D H, Chen S H, Li Z Y, Chang C Y and Kuo H C 2016 Semicond. Sci. Technol. 31 055003
|
[22] |
Ferreyra R A, Suzuki A, Kazumoto T and Ueda D 2017 IEEE Electron Device Lett. 38 1079
|
[23] |
Hou M C, Xie G and Sheng K 2018 IEEE Electron Device Lett. 39 1137
|
[24] |
Schmid A, Schroeter C, Otto R, Schuster M, Klemm V, Rafaja D and Heitmann J 2015 Appl. Phys. Lett. 106 053509
|
[25] |
Piazza M, Dua C, Oualli M, Morvan E, Carisetti D and Wyczisk F 2009 Microelectron. Reliab. 49 1222
|
[26] |
Greco G, Giannazzo F, Iucolano F, Nigro R L and Roccaforte F 2013 J. Appl. Phys. 114 083717
|
[27] |
Schroder D K 2006 Semiconductor Material and Device Characterization (3rd edn.) (Hoboken: John Wiley & Sons) p. 133
|
[28] |
Liu Z H, Arulkumaran S and Ng G I 2009 Appl. Phys. Lett. 94 142105
|
[29] |
Iucolano F, Roccaforte F, Alberti A, Bongiorno C, Franco S D and Raineri V 2006 J. Appl. Phys. 100 123706
|
[30] |
Upadhyay P, Meer M, Takhar K, Khachariya D, Kumar S A, Banerjee D, Ganguly S, Laha A and Saha D 2015 Phys. Status Solidi B 252 989
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|