Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037801    DOI: 10.1088/1674-1056/28/3/037801
Special Issue: SPECIAL TOPIC — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Photodetector: Materials, physics, and applications Prev   Next  

SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector

Yao Li(李尧)1, Libin Tang(唐利斌)1,2, Rujie Li(李汝劼)2,3, Jinzhong Xiang(项金钟)1, Kar Seng Teng4, Shu Ping Lau(刘树平)5
1 School of Materials Science and Engineering, Yunnan University, Kunming 650091, China;
2 Kunming Institute of Physics, Kunming 650223, China;
3 School of Physics, Beijing Institute of Technology, Beijing 100081, China;
4 College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom;
5 Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Abstract  

Tin sulfide quantum dots (SnS2 QDs) are n-type wide band gap semiconductor. They exhibit a high optical absorption coefficient and strong photoconductive property in the ultraviolet and visible regions. Therefore, they have been found to have many potential applications, such as gas sensors, resistors, photodetectors, photocatalysts, and solar cells. However, the existing preparation methods for SnS2 QDs are complicated and require a high temperature and high pressure environments; hence they are unsuitable for large-scale industrial production. An effective method for the preparation of monodispersed SnS2 QDs at normal temperature and pressure will be discussed in this paper. The method is facile, green, and low-cost. In this work, the structure, morphology, optical, electrical, and photoelectric properties of SnS2 QDs are studied. The synthesized SnS2 QDs are homogeneous in size and exhibit good photoelectric performance. A photoelectric detector based on the SnS2 QDs is fabricated and its J-V and C-V characteristics are also studied. The detector responds under λ=365 nm light irradiation and reverse bias voltage. Its detectivity approximately stabilizes at 1011 Jones at room temperature. These results show the possible use of SnS2 QDs in photodetectors.

Keywords:  SnS2      quantum dots      photoelectric properties      photodetector  
Received:  07 October 2018      Revised:  07 January 2019      Accepted manuscript online: 
PACS:  78.67.Hc (Quantum dots)  
  84.60.Jt (Photoelectric conversion)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: 

Project supported by the Equipment Pre-research Fund under the Equipment Development Department (EDD) of China's Central Military Commission (CMC) (Grant No. 1422030209), the Innovation Team Program of China North Industries Group Corporation Limited (NORINCO) Group (Grant No. 2017CX024), and the National Natural Science Foundation of China (Grant Nos. 61106098 and 11864044).

Corresponding Authors:  Libin Tang, Jinzhong Xiang     E-mail:  scitang@163.com;jzhxiang@ynu.edu.cn

Cite this article: 

Yao Li(李尧), Libin Tang(唐利斌), Rujie Li(李汝劼), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平) SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector 2019 Chin. Phys. B 28 037801

[1] Lee M J, Ahn J H, Sung J H, Heo H, Jeon S G, Lee W, Song J Y, Hong K H, Choi B, Lee S H and Jo M H 2016 Nat. Commum. 7 12011
[2] Buscema M, Barkelid M, Zwiller V, van der Zant H S J, Steele G A and Gomez A C 2013 Nano Lett. 13 358
[3] Li X, He D W, Wang Y S, Hu Y, Zhao X, Fu C and Wu J Y 2018 Chin. Phys. B 27 056104
[4] Xia J, Zhu D D, Wang L, Huang B, Huang X and Meng X M 2015 Adv. Funct. Mater. 25 4255
[5] Zhou X, Gan L, Zhang Q, Xiong X, Li H Q, Zhong Z Q, Han J B and Zhai T Y 2016 J. Mater. Chem. C 4 2111
[6] Zhou X, Zhang Q, Gan L, Li H Q and Zhai T Y 2016 Adv. Funct. Mater. 26 4405
[7] Ou J Z, Ge W Y, Carey B, Daenake T, Rotbart A, Shan W, Wang Y C, Fu Z Q, Chrimes A F, Wlodarski W, Russo S P, Li Y X and Kalantar-zadeh K 2015 ACS Nano 9 10313
[8] Seo J, Jang J, Park S, Kim C, Park B and Cheon J 2008 Adv. Mater. 20 4269
[9] Klimov V I, Mikhailovsky A A, Xu Su, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J and Bawendi M G 2000 Science 290 314
[10] Tang Jing and Xu X L 2018 Chin. Phys. B 27 027804
[11] Gao L, Chen C, Zeng K, Ge C, Yang D, Song H S and Tang J 2016 Light: Sci. & Appl. 5 e16126
[12] Yuan Y J, Chen D Q, Shi X F, Tu J R, Hu B, Yang L X, Yu Z T and Zou Z G 2017 Chem. Eng. J. 313 1438
[13] Tan F R, Qu S C, Wu J, Liu K, Zhou S Y and Wang Z G 2011 Nanoscale Res. Lett. 6 298
[14] Qiao B, Zhao S L, Xu Z and Xu X R 2016 Chin. Phys. B 25 098102
[15] Fu X, Ilanchezhiyan P, Kumar G M, Cho H D, Zhang L, Chan A S, Lee D J, Panin G N and Kang T W 2017 Nanoscale 9 1820
[16] Truong N T N and Park C 2016 Electron. Mater. Lett. 12 308
[17] Tsukigase H, Suzuki Y, Berger M H, Sagawa T and Yoshikawa S 2011 J. Nanosci. Nanotechnol. 11 3215
[18] Yin Y and Alivisatos A P 2005 Nature 437 664
[19] Zhai C X, Du N and Yang H Z D 2011 Chem. Commun. 47 1270
[20] Tu J R, Shi X F, Lu H W, Yang N X and Yuan Y J 2016 Mater. Lett. 185 303
[21] Bharatula L D, Erande M B, Mulla I S, Rout C S and Late D J 2016 RSC Adv. 6 105421
[22] Tan F R, Qu S C, Zeng X B, Zhang C S, Shi M J, Wang Z J, Jin L, Bi Y, Cao J, Wang Z G, Hou Y B, Teng F and Feng Z H 2010 Solid State Commun. 150 58
[23] Lin C X, Zhu M S Q, Zhang T, Liu Y F, Lv Y C, Li X J and Liu M H 2017 RSC Adv. 7 12255
[24] Yuan H, Sutter E, Sadowski J T, Cotlet M, Monti O L A, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A and Sutter P 2014 ACS Nano 8 10743
[25] Satoh N, Nakashima T, Kamikura K and Yamamoto K 2008 Nat. Nanotechnol. 3 106
[26] Li X L, Chu L B, Wang Y Y and Pan L S 2016 Mat. Sci. Eng. B 205 46
[27] Ham G, Shin S, Park J, Lee J, Choi H, Lee S and Jeon H 2016 RSC Adv. 6 54069
[28] Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
[29] Liu E K, Zhu B S and Luo J S 2011 The Physics of Semiconductors (7th edn.) (Beijing: Publishing House of Electrics Industry) p. 111 (in Chinese)
[30] Ramar M, Suman C K, Manimozhi R, Ahamad R and Srivastava 2014 RSC Adv. 4 32651
[31] Zhao J H, Tang L B, Xiang J Z, Ji R B, Hu Y B, Yuan J, Zhao J, Tai Y J and Cai Y H 2015 RSC Adv. 5 29222
[32] Miao X C, Tongay S, Petterson M K, Berke K, Rinzler A G, Appleton B R and Hebard A F 2012 Nano Lett. 12 2745
[33] Shivareman S, Herman L H, Rana F, Park J and Spencer M G 2012 Appl. Phys. Lett. 100 183112
[34] Singh A, Uddin M A, Sudarshan T and Koley G 2014 Small 10 1555
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[8] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[12] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[13] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[14] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!