Special Issue:
TOPICAL REVIEW — Photodetector: Materials, physics, and applications
|
TOPICAL REVIEW—Photodetector: materials, physics, and applications |
Prev
Next
|
|
|
Recent advances in Ga-based solar-blind photodetectors |
Ming-sheng Xu(徐明升)1, Lei Ge(葛磊)1, Ming-ming Han(韩明明)1,3, Jing Huang(黄静)2, Hua-yong Xu(徐化勇)1, Zai-xing Yang(杨再兴)1,3 |
1 School of Microelectronics, Shandong University, Jinan 250100, China; 2 School of Mechatronics Engineering, Guizhou Minzu University, Guiyang 550025, China; 3 Shenzhen Research Institute of Shandong University, Shenzhen 518057, China |
|
|
Abstract Solar-blind ultraviolet photodetectors have many advantages, such as low false alarm rates, the ability to detect weak signals, and high signal-to-noise ratios. Among the various functional solar-blind ultraviolet photodetectors, Ga-based alloys of AlGaN and Ga2O3 are the most commonly adopted channel semiconductor materials and have attracted extensive research attention in the past decades. This review presents an overview of the recent progress in Ga-based solar-blind photodetectors. In case of AlGaN-based solar-blind ultraviolet photodetectors, the response properties can be improved by optimizing the AlN nucleation layer and designing the avalanche structure. On the other hand, we also discuss the morphology and growth methods of Ga2O3 nanomaterials and their effect on the performance of the corresponding solar-blind photodetectors. The mechanically exfoliated Ga2O3 flakes show good potential for ultraviolet detection. Also, Ga2O3 nanoflowers and nanowires reveal perfect response to ultraviolet light. Finally, the challenges and future development of Ga-based functional solar-blind ultraviolet photodetectors are summarized.
|
Received: 11 October 2018
Revised: 08 December 2018
Accepted manuscript online:
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
61.82.Fk
|
(Semiconductors)
|
|
Fund: Project supported by the National Key Reserch and Development Program of China (Grant No. 2017YFA0305500), the Fund from Science Technology and Innovation Committee of Shenzhen Municipality, China (Grant No. JCYJ20170307093131123), the National Natural Science Foundation of China (Grant No. 61504044), the Key Research and Development Program of Shandong Province, China (Grant Nos. 2018GGX101027, 2017GGX201002, 2017CXGC0412, 2016ZDJS09A05, and 2016GGX4101), Shandong Provincial Natural Science Foundation, China (Grant No. ZR2017MF037), “Qilu Young Scholar” Program of Shandong University, Yantai “13th Five-Year” Marine Economic Innovation and Development Demonstration City Project, China (Grant No. YHCX-ZB-L-201703), the Union Funds of Guizhou Science and Technology Department and Guizhou Minzu University, China (Grant No. LH20157221), and the Fundamental Research Funds of Shandong University, China (Grant Nos. 2018WLJH87 and 2017TB0021). |
Corresponding Authors:
Jing Huang, Zai-xing Yang
E-mail: kikihuangjing@163.com;zaixyang@sdu.edu.cn
|
Cite this article:
Ming-sheng Xu(徐明升), Lei Ge(葛磊), Ming-ming Han(韩明明), Jing Huang(黄静), Hua-yong Xu(徐化勇), Zai-xing Yang(杨再兴) Recent advances in Ga-based solar-blind photodetectors 2019 Chin. Phys. B 28 028502
|
[1] |
Jiang D, Xiang W, Guo F, Hao H, Han X, Li X, Wang G, Xu Y, Yu Q and Niu Z 2016 Chin. Phys. Lett. 33 048502
|
[2] |
Lv Q Q, Ye H, Yin D, Yang X H and Qin H 2015 Chin. Phys. Lett. 32 128503
|
[3] |
Weng Q, An Z, Xiong D and Zhu Z 2015 Chin. Phys. Lett. 32 108503
|
[4] |
Xiao B, Zhang M L, Wang H B and Liu J Y 2017 Acta Phys. Sin. 66 228501 (in Chinese)
|
[5] |
Liu S R, Nie Z T, Zhang M L, Wang L, Leng Y B and Sun Y J 2017 Acta Phys. Sin. 68 188501 (in Chinese)
|
[6] |
Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 2018 Chin. Phys. B 27 047209
|
[7] |
Zhang Z, Fu Z, Guo X and Cao J 2018 Chin. Phys. B 27 030701
|
[8] |
Yang Z, Han N, Fang M, Lin H, Cheung H Y, Yip S P, Wang E J, Hung T F, Wong C Y and Ho J C 2014 Nat. Commun. 5 5249
|
[9] |
Yang Z, Yip S P, Li D, Han N, Dong G, Liang X, Shu L, Hung T F, Mo X and Ho J C 2015 ACS Nano 9 9268
|
[10] |
Han N, Yang Z, Wang F, Yip S P, Li D, Hung T F, Chen Y and Ho J C 2016 ACS Nano 10 6283
|
[11] |
Yang Z, Yin Y, Sun J, Bian L, Han N, Zhou Z, Shu L, Wang F, Chen Y and Song A 2018 Sci. Rep. 8 6928
|
[12] |
Yang Z, Liu L, Yip S, Li D, Shen L, Zhou Z, Han N, Hung T F, Pun E Y B, Wu X, Song A and Ho J C 2017 ACS Nano 11 4237
|
[13] |
Sun J, Han M, Gu Y, Yang Z and Zeng H 2018 Adv. Opt. Mater. 6 1800256
|
[14] |
Zhang Z Z, Li H and Cao J C 2018 Acta Phys. Sin. 67 090702 (in Chinese)
|
[15] |
Assefa S, Xia F and Vlasov Y A 2010 Nature 464 80
|
[16] |
Li L, Auer E, Liao M, Fang X, Zhai T, Gautam U K, Lugstein A, Koide Y, Bando Y and Golberg D 2011 Nanoscale 3 1120
|
[17] |
Fan P, Chettiar U K, Cao L, Afshinmanesh F, Engheta N and Brongersma M L 2012 Nat. Photon. 6 380
|
[18] |
Chen X, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S, Zhang R and Zheng Y 2017 ACS Appl. Mater. Interfaces 9 36997
|
[19] |
Chen Y, Lu Y, Lin C, Tian Y, Gao C, Dong L and Shan C 2018 J. Mater. Chem. C 6 5727
|
[20] |
Wang P, Zhen Q, Tang Q, Yang Y, Guo L, Ding K and Huang F 2013 Opt. Express 21 18387
|
[21] |
Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X and Shen D Z 2014 Appl. Phys. Lett. 105 163506
|
[22] |
Rana V S, Rajput J K, Pathak T K and Purohit L P 2018 J. Alloys Compd. 764 724
|
[23] |
Teng Y, Song L X, Liu W, Xu Z Y, Wang Q S and Mao M R 2016 J. Mater. Chem. C 4 3113
|
[24] |
Tsai S, Basu S, Huang C, Hsu L, Lin Y and Horng R 2018 Sci. Rep. 8 14056
|
[25] |
Lambert D J H, Wong M M, Chowdhury U and Collins C 2000 Appl. Phys. Lett. 77 1900
|
[26] |
Sun L, Chen J, Li J and Jiang H 2010 Appl. Phys. Lett. 97 191103
|
[27] |
Han W Y, Zhang Z W, Li Z M, Chen Y R, Song H, Miao G Q, Fan F, Chen H F, Liu Z and Jiang H 2018 J. Mater. Sci. - Mater. Electron. 29 9077
|
[28] |
Wang C, Xu Y H, Li C and Lin H J 2017 Acta Phys. Sin. 66 198502 (in Chinese)
|
[29] |
Feng Y J, Li C, Liu Q L, Wang H Q, Hu A Q, He X Y and Guo X 2018 Chin. Phys. B 27 048501
|
[30] |
Jiang H and Egawa T 2007 Appl. Phys. Lett. 90 121121
|
[31] |
Biyikli N, Kimukin I, Tut T, Aytur O and Ozbay E 2005 Electron. Lett. 41 274
|
[32] |
Zhang W, Xu J, Ye W, Li Y, Qi Z, Dai J, Wu Z, Chen C, Yin J and Li J 2015 Appl. Phys. Lett. 106 021112
|
[33] |
Tang Y, Cai Q, Yang L H, Dong K X, Chen D J, Lu H, Zhang R and Zheng Y D 2017 Chin. Phys. B 26 038503
|
[34] |
Yang L, Shengkai L, Futian L, Qi S, Hao L and Chengzhi P 2016 Chin. Phys. Lett. 33 30303
|
[35] |
Liu F, Zhou D, Lu H, Chen D J, Ren F F, Zhang R and Zheng Y D 2015 Chin. Phys. Lett. 32 128501
|
[36] |
Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C and Tang W 2017 ACS Appl. Mater. Interfaces 9 1619
|
[37] |
Pavesi M, Fabbri F, Boschi F, Piacentini G, Baraldi A, Bosi M, Gombia E, Parisini A and Fornari R 2018 Mater. Chem. Phys. 205 502
|
[38] |
Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R and Droopad R 2017 J. Appl. Phys. 122 095302
|
[39] |
Alema F, Hertog B, Osinsky A, Mukhopadhyay P, Toporkov M and Schoenfeld W V 2017 J. Cryst. Growth 475 77
|
[40] |
Cao Q, He L, Feng X, Xiao H and Ma J 2018 Ceram. Int. 44 830
|
[41] |
Rafique S, Han L and Zhao H 2017 ECS Trans. 80 203
|
[42] |
Pratiyush A S, Krishnamoorthy S, Kumar S, Xia Z, Muralidharan R, Rajan S and Nath D N 2018 Jpn. J. Appl. Phys. 57 060313
|
[43] |
Kumar S, Tessarek C, Christiansen S and Singh R 2014 J. Alloys Compd. 587 812
|
[44] |
Choi K H and Kang H C 2014 Mater. Lett. 123 160
|
[45] |
Kwon Y, Lee G, Oh S, Kim J, Pearton S J and Ren F 2017 Appl. Phys. Lett. 110 131901
|
[46] |
Cui W, Guo D, Zhao X, Wu Z, Li P, Li L, Cui C and Tang W 2016 RSC Adv. 6 100683
|
[47] |
Lou Z, Li L and Shen G 2015 Nano Res. 8 2162
|
[48] |
Sarkar B, Haidet B B, Reddy P, Kirste R, Collazo R and Sitar Z 2017 Appl. Phys. Express 10 071001
|
[49] |
Chen Y R, Zhang Z W, Jiang H, Li Z M, Miao G Q and Song H 2018 J. Mater. Chem. C 6 4936
|
[50] |
Imura M, Nakano K, Kitano T, Fujimoto N, Narita G, Okada N, Balakrishnan K, Iwaya M, Kamiyama S and Amano H 2006 Appl. Phys. Lett. 89 221901
|
[51] |
Chen Y R, Song H, Li D B, Sun X J, Jiang H, Li Z M, Miao G Q, Zhang Z W and Zhou Y 2014 Mater. Lett. 114 26
|
[52] |
Yan J C, Wang J X, Zhang Y, Cong P P, Sun L, Tian Y D, Zhao C and Li J M 2015 J. Crystal Growth 414 254
|
[53] |
Monroy E, Calle F, Muñoz E and Omnés F 1999 Electron. Lett. 74 3401
|
[54] |
Walde S, Brendel M, Zeimer U, Brunner F, Hagedorn S and Weyers M 2018 J. Appl. Phys. 123 161551
|
[55] |
Yoshikawa A, Ushida S, Nagase K, Iwaya M, Takeuchi T, Kamiyama S and Akasaki I 2017 Appl. Phys. Lett. 111 191103
|
[56] |
Gökkavas M, Butun S, Tut T, Biyikli N and Ozbay E 2007 Photon. Nanostruct. 5 53
|
[57] |
Chen C H, Chang S J, Wu M H, Tsai S Y and Chien H J 2010 Jpn. J. Appl. Phys. 49 04DG05
|
[58] |
Wang X, Hu W, Pan M, Hou L, Xie W, Xu J, Li X, Chen X and Lu W 2014 J. Appl. Phys. 115 013103
|
[59] |
Wu H, Wu W, Zhang H, Chen Y, Wu Z, Wang G and Jiang H 2016 Appl. Phys. Express 9 052103
|
[60] |
Gao L 2015 Opt. Quantum Electron. 47 1933
|
[61] |
Huang Y, Chen D, Lu H, Dong K, Zhang R, Zheng Y, Li L and Li Z 2012 Appl. Phys. Lett. 101 253516
|
[62] |
Shao Z G, Yang X F, You H F, Chen D J, Lu H, Zhang R, Zheng Y D and Dong K X 2017 IEEE Electron Dev. Lett. 38 485
|
[63] |
He H, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rérat M 2006 Phys. Rev. B 74 195123
|
[64] |
Oh S, Kim J, Ren F, Pearton S J and Kim J 2016 J. Mater. Chem. C 4 9245
|
[65] |
Zhang X, Zhang Z, Huang H, Wang Y, Tong N, Lin J, Liu D and Wang X 2018 Nanoscale 10 21509
|
[66] |
Kim J, Tahara D, Miura Y and Kim B G 2018 Appl. Phys. Express 11 061101
|
[67] |
Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K and Tanaka I 2007 J. Phys.: Condens. Matter 19 346211
|
[68] |
Arora K, Goel N, Kumar M and Kumar M 2018 ACS Photon. 5 2391
|
[69] |
Chen H, Yu P, Zhang Z, Teng F, Zheng L, Hu K and Fang X 2016 Small 12 5809
|
[70] |
Cui S J, Mei Z X, Hou Y N, Chen Q S, Liang H L, Zhang Y H, Huo W X and Du X L 2018 Chin. Phys. B 27 067301
|
[71] |
Azhar E A, Vanjaria J, Ahn S, Fou T, Dey S K, Salagaj T, Sbrockey N, Tompa G S and Yu H 2018 ACS Omega 3 4899
|
[72] |
Ge M, Cai Q, Zhang B H, Chen D J, Hu L Q, Xue J J, Lu H, Zhang R and Zheng Y D 2017 IEEE Photon. J. 9 1
|
[73] |
Oh S, Jung Y, Mastro M A, Hite J K, Eddy C R and Kim J 2015 Opt. Express 23 28300
|
[74] |
Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C and Li L 2014 Opt. Mater. Express 4 1067
|
[75] |
Wu Z, Bai G, Qu Y, Guo D, Li L, Li P, Hao J and Tang W 2016 Appl. Phys. Lett. 108 211903
|
[76] |
Mu W, Jia Z, Yin Y, Hu Q, Zhang J, Feng Q, Hao Y and Tao X 2017 CrystEngComm 19 5122
|
[77] |
Guo X, Hao N, Guo D, Wu Z, An Y, Chu X, Li L, Li P, Lei M and Tang W 2016 J. Alloys Compd. 660 136
|
[78] |
Hwang W S, Verma A, Peelaers H and Protasenko V 2014 Appl. Phys. Lett. 104 203111
|
[79] |
Liu Y, Du L, Liang G, Mu W, Jia Z, Xu M, Xin Q, Tao X and Song A 2018 IEEE Electron. Dev. Lett. 39 1696
|
[80] |
Oh S, Mastro M A, Tadjer M J and Kim J 2017 ECS J. Solid State SC. 6 Q79
|
[81] |
Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T and Wei W 2018 Acta Phys. Sin. 67 118502 (in Chinese)
|
[82] |
Li X, Sun J D, Zhang Z P, Popov V and Qin H 2018 Chin. Phys. B 27 068506
|
[83] |
Feng W, Wang X, Zhang J, Wang L, Zheng W, Hu P, Cao W and Yang B 2014 J. Mater. Chem. C 2 3254
|
[84] |
Teng Y, Song L X, Ponchel A, Yang Z K and Xia J 2014 Adv. Mater. 26 6238
|
[85] |
Monroy E, Calle F, Munoz E, Omnes F, Gibart P and Munoz J A 1998 Appl. Phys. Lett. 73 2146
|
[86] |
Walker D, Kumar V, Mi K, Sandvik P, Kung P, Zhang X H and Razeghi M 2000 Appl. Phys. Lett. 76 403
|
[87] |
Tut T, Gokkavas M, Inal A and Ozbay E 2007 Appl. Phys. Lett. 90 163506
|
[88] |
Oshima T, Okuno T and Fujita S 2007 Jpn. J. Appl. Phys. 46 7217
|
[89] |
Oshima T, Okuno T, Arai N, Suzuki N, Ohira S and Fujita S 2008 Appl. Phys. Express 1 011202
|
[90] |
Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|