Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 028503    DOI: 10.1088/1674-1056/28/2/028503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High material quality growth of AlInAsSb thin films on GaSb substrate by molecular beam epitaxy

Fa-Ran Chang(常发冉)1, Rui-Ting Hao(郝瑞亭)1, Tong-Tong Qi(齐通通)1, Qi-Chen Zhao(赵其琛)1, Xin-Xing Liu(刘欣星)1, Yong Li(李勇)1, Kang Gu(顾康)1, Jie Guo(郭杰)1, Guo-Wei Wang(王国伟)2,3, Ying-Qiang Xu(徐应强)2,3, Zhi-Chuan Niu(牛智川)2,3
1 School of Energy & Environment Science, Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Ministry of Education, Yunnan Key Laboratory of Opto-electronic Information Technology, Yunnan Normal University, Kunming 650092, China;
2 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  In this paper, high material quality Al0.4In0.6AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform infrared (FTIR) spectrometer, and atomic force microscope (AFM). The x-ray diffraction exhibits high order satellite peaks with a measured period of 31.06 Å (theoretical value is 30.48 Å), the mismatch between the GaSb substrate and AlInAsSb achieves -162 arcsec, and the root-mean square (RMS) roughness for typical material growths has achieved around 1.6 Å over an area of 10 μm×10 μm. At room temperature, the photoluminescence (PL) spectrum shows a cutoff wavelength of 1.617 μm.
Keywords:  AlInAsSb      short-wavelength      digital alloy  
Received:  11 September 2018      Revised:  26 November 2018      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  68.65.Cd (Superlattices)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774130 11474248, 61176127, 61006085, 61274013, and 61306013, the Key Program for International Science and Technology Cooperation Projects of China (Grant No. 2011DFA62380), and the Ph. D. Programs Foundation of the Ministry of Education of China (Grant No. 20105303120002).
Corresponding Authors:  Rui-Ting Hao, Jie Guo, Guo-Wei Wang     E-mail:  ruitinghao@semi.ac.cn;jieggg1020@sina.com;wangguowei@semi.ac.cn

Cite this article: 

Fa-Ran Chang(常发冉), Rui-Ting Hao(郝瑞亭), Tong-Tong Qi(齐通通), Qi-Chen Zhao(赵其琛), Xin-Xing Liu(刘欣星), Yong Li(李勇), Kang Gu(顾康), Jie Guo(郭杰), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川) High material quality growth of AlInAsSb thin films on GaSb substrate by molecular beam epitaxy 2019 Chin. Phys. B 28 028503

[1] Gallant M, Puetz N, Zemel A and Shepherd F 1988 Appl. Phys. Lett. 52 733
[2] Kozlowski L J, Arias J M, Williams G M, Vural K, Cooper D E, Cabelli S A and Bruce C 1994 Infrared Detectors: State of the Art Ⅱ, 1994, San Diego, CA USA, pp. 93-117
[3] Tennant W, Lee D, Zandian M, Piquette E and Carmody M 2008 J. Electron. Mater. 37 1406
[4] Lee D, Carmody M, Piquette E, Dreiske P, Chen A, Yulius A, Edwall D, Bhargava S, Zandian M and Tennant W 2016 J. Electron. Mater. 45 4587
[5] Chang J, Su Y K, Jaw D, Shiao H and Lin W 1999 J. Crystal Growth 203 481
[6] Semenov A, Solov'Ev V, Meltser B Y, Terent'ev Y V, Prokopova L and Ivanov S 2005 J. Crystal Growth 278 203
[7] Zederbauer T, Andrews A M, MacFarland D, Detz H, Schrenk W and Strasser G 2016 Photonics 3 20
[8] Washington-Stokes D, Hogan T P, Chow P C, Golding T D, Kirschbaum U, Littler C L and Lukic R 1999 J. Crystal Growth 201 854
[9] Tournet J, Rouillard Y and Tournié E 2017 J. Cryst. Growth 477 72
[10] Maddox S J, March S D and Bank S R 2016 Cryst. Growth & Des. 16 3582
[11] Vaughn L G 2006 “Mid-infrared multiple quantum well lasers using digitally-grown aluminum indium arsenic antimonide barriers and strained indium arsenic antimonide wells”, Ph. D. dissertation (New Mexico: University of New Mexico) (in American)
[12] Vaughn L G, Dawson L R, Pease E A, Lester L F, Xu H, Jiang Y and Gray A L 2005 Physics and Simulation of Optoelectronic Devices XⅢ, 2015, San Jose, California, USA pp. 307
[13] Lyu Y, Han X, Sun Y, Jiang Z, Guo C, Xiang W, Dong Y, Cui J, Yao Y, Jiang D, Wang G, Xu Y and Niu Z 2018 J. Crystal Growth 482 70
[14] Neuberger M 2013 Ⅲ-V semiconducting compounds (Springer Science & Business Media)
[15] Schwoebel R L and Shipsey E J 1966 J. Appl. Phys. 37 3682
[16] Chiu T, Tsang W, Ditzenberger J, Chu S and Van der Ziel J 1986 J. Appl. Phys. 60 205
[17] Rodriguez J, Christol P, Cerutti L, Chevrier F and Joullié A 2005 J. Crystal Growth 274 6
[1] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[2] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[3] InP-based InGaAs/InAlGaAs digital alloy quantum well laser structure at 2 μm
Gu Yi(顾溢), Wang Kai(王凯), Li Yao-Yao(李耀耀), Li Cheng(李成), and Zhang Yong-Gang(张永刚). Chin. Phys. B, 2010, 19(7): 077304.
[4] A study on the short-wavelength and high-numerical-aperture phase-change recording
Liu Bo (刘 波), Ruan Hao (阮 昊), Gan Fu-Xi (干福熹). Chin. Phys. B, 2003, 12(1): 107-111.
No Suggested Reading articles found!