CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials |
Wei Jia(贾微), Pei-Wen Ren(任佩雯), Yu-Chen Tian(田雨宸), Chun-Zhen Fan(范春珍) |
School of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract A graphene-based metamaterial for THz plasmon induced transparency (PIT) is presented and numerically studied in this paper, which consists of two horizontal graphene strips attached to a continuous vertical wire separately. The calculated surface current distributions demonstrate that the distinct PIT window results from the near-field coupling of two bright modes. To explore the physical mechanism of PIT effect, we employ the coupled Lorentz oscillator model. The transmission spectra obtained with this model fits well with the simulation results. The performance of the PIT system can be controlled through the geometry parameters of graphene strips. Moreover, the transparency window can be dynamically tuned by varying the Fermi energy and the carrier mobility of the graphene strips. The slow light effect is also explored in our proposed structure and it can achieve 1.25 ps when Fermi energy is 1.3 eV. Finally, the position of the transmission window with the variation of the nearby medium refractive index is examined. Such a proposed graphene-based PIT system may have great potential applications in photonic devices.
|
Received: 09 September 2018
Revised: 09 November 2018
Accepted manuscript online:
|
PACS:
|
61.48.Gh
|
(Structure of graphene)
|
|
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant Nos. 162102210164 and 1721023100107) and the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002). |
Corresponding Authors:
Chun-Zhen Fan
E-mail: chunzhen@zzu.edu.cn
|
Cite this article:
Wei Jia(贾微), Pei-Wen Ren(任佩雯), Yu-Chen Tian(田雨宸), Chun-Zhen Fan(范春珍) Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials 2019 Chin. Phys. B 28 026102
|
[1] |
Harris S E, Field J and Imamoğlu A 2015 Plasmonics 10 1115
|
[2] |
Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
|
[3] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[4] |
He J N, Wang J Q, Ding P, Fan C Z, Arnaut L R and Liang E J 2015 Plasmonics 10 1115
|
[5] |
Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P and Stefan A 2009 Nano Lett. 9 1663
|
[6] |
Tian Y C, Jia W, Ren P W and Fan C Z 2018 Chin. Phys. B 27 124205
|
[7] |
Luk'yanchuk B, Zheludev N I, Maier S A, Halas H J, Nordlander P, Giessen H and Chong C T 2017 Opt. Eng. 56 107106
|
[8] |
Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönichsen C and Giessen H P 2010 Nano Lett. 10 1103
|
[9] |
Yu Z, Che H, Liu J J, Jing X F, Li X J and Hong Z 2017 Chin. Phys. B 26 077804
|
[10] |
Zhang Y, Li J, Li H and Yuan P 2013 Opt. Laser Technol. 49 202
|
[11] |
Novikova I, Walsworth R L and Xiao Y 2012 Laser Photon. Rev. 6 333
|
[12] |
Chen J X, Wang P, Chen C C, Lu Y H, Ming H and Zhan Q W 2011 Opt. Express 19 5970
|
[13] |
Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
|
[14] |
Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2016 Plasmonics 11 1597
|
[15] |
He X J, Yao Y, Yang X Y, Lu G J, Yang W L, Yang Y Q, Wu F M, Yu Z G and Jiang J X 2018 Opt. Commun. 410 206
|
[16] |
Tian Y C, Ding P and Fan C Z 2017 Opt. Eng. 56 107106
|
[17] |
Shang X J, Zhai X, Li X F, Wang L L, Wang B X and Liu G D 2017 Opt. Express 25 10484
|
[19] |
Zhu Y, Hu X Y, Yang H and Gong Q H 2014 Sci. Rep. 4 3752
|
[20] |
Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2013 Opt. Express 21 28438
|
[31] |
Nikitin A Y, Guinea F and Martin-Moreno L 2015 Opt. Mater. Express 5 1962
|
[21] |
Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
|
[22] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[23] |
Li H J, Wang L L, Liu J Q, Huang Z R, Sun B and Zhai X 2013 Appl. Phys. Lett. 103 211104
|
[24] |
Luo X, Qiu T, Lu W, Ni Z 2013 Mater. Sci. Eng. R 74 351
|
[25] |
Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L and Xing H G 2012 Nat. Commun. 3 780
|
[26] |
Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
|
[27] |
Fei Z, Sn A, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F and Basov D N 2012 Nature 487 82
|
[28] |
Koppens F H L, Chang D E and Garcia de Abajo F J 2011 Nano Lett. 11 3370
|
[29] |
Sun C, Si J N, Dong Z W and Deng X X 2016 Opt. Express 24 11466
|
[30] |
Shi X, Han D Z, Dai Y Y, Yu Z F, Sun Y, Chen H, Liu X H and Zi J 2013 Opt. Express 21 28438
|
[31] |
Nikitin A Y, Guinea F and Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119
|
[32] |
Ke S, Wang B, Huang H, Long H, Wang K and Lu P 2015 Opt. Express 23 8888
|
[33] |
Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
|
[34] |
Jiang J X, Zhang Q F, Ma Q X, Yan S T, Wu F M and He X J 2015 Opt. Mater. Express 5 1962
|
[35] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[36] |
Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L and Ruoff R 2013 Science 342 720
|
[37] |
Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
|
[38] |
Niu Y, Wang J, Hu Z and Zhang F 2018 Opt. Commun. 416 77
|
[39] |
Cheng H, Chen S, Yu P, Duan X, Xie B and Tian J 2013 Appl. Phys. Lett. 103 203112
|
[40] |
Artar A, Yanik A A and Altug H 2011 Nano Lett. 11 1685
|
[41] |
Shang X J, Zhai X, Li X F, Wang L L, Wang B X and Liu G D 2016 Plasmonics 11 419
|
[42] |
Garcia de Abajo J F 2014 ACS Photonics 1 135
|
[43] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
|
[44] |
Huang S Y, Song C Y, Zhang G W and Yan H G 2016 Nanophotonics 6 1191
|
[45] |
Cao W, Singh R, Zhang C H, Han J G, Tonouchi M and Zhang W L 2013 Appl. Phys. Lett. 103 101106
|
[46] |
Zhao Z Y, Song Z Q, Shi W Z and Peng W 2016 Opt. Mater. Express 6 2190
|
[47] |
Yu D M, Zhai X, Wang L L, Lin Q, Li H J, Xia S X and Shang X J 2016 Plasmonics 11 1151
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|