CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7 |
Gang Jian(简刚)1,2, Mei-Rui Liu(刘美瑞)1, Chen Zhang(张晨)1, Jie Lu(卢杰)1, Chao Yan(晏超)1 |
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; 2 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta 30332, USA |
|
|
Abstract Elastic properties are important in fundamental understanding of multiferroic materials. However, up to now, there is no work about anisotropy of elastic properties in orthorhombic Ca3Mn2O7. In this study, using coordinate transformation method, we investigated basic elastic parameters (elastic constants c'ij) and engineering elastic parameters (Young's modulus E', Poisson's ratio v', and the rigidity modulus G') of orthorhombic Ca3Mn2O7 along arbitrary orientations. The detailed anisotropic characteristics of these parameters were presented. The results reveal the orientation related elastic properties in mm2 point group orthorhombic Ca3Mn2O7.
|
Received: 01 October 2018
Revised: 11 December 2018
Accepted manuscript online:
|
PACS:
|
62.20.de
|
(Elastic moduli)
|
|
64.30.Jk
|
(Equations of state of nonmetals)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
Corresponding Authors:
Gang Jian, Chao Yan
E-mail: gjian@just.edu.cn;chaoyan@just.edu.cn
|
Cite this article:
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超) Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7 2019 Chin. Phys. B 28 026201
|
[1] |
Fishman R S 2013 Phys. Rev. B 87 224419
|
[2] |
Shimamoto K, Mukherjee S, Manz S, White J S, Trassin M, Kenzelmann M, Chapon L, Lippert T, Fiebig M, Schneider C W and Niedermayer C 2017 Sci. Rep. 7 44753
|
[3] |
Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M and Tokura Y 1996 Science 274 1698
|
[4] |
Benedek N A and Fennie C J 2011 Phys. Rev. Lett. 106 107204
|
[5] |
Zhu W, Pi L, Huang Y, Tan S and Zhang Y 2012 Appl. Phys. Lett. 101 192407
|
[6] |
Bendersky L A, Greenblatt M and Chen R 2003 J. Solid State Chem. 174 418
|
[7] |
Lobanov M V, Greenblatt M, Caspi E N, Jorgensen J D, Sheptyakov D V, Toby B H, Botez C E and Stephens P W 2004 J. Phys.: Condens. Matter 16 5339
|
[8] |
Senn M S, Bombardi A, Murray C A, Vecchini C, Scherillo A, Luo X and Cheong S W 2015 Phys. Rev. Lett. 114 035701
|
[9] |
Lee M H, Chang C P, Huang F T, Guo G Y, Gao B, Chen C H, Cheong S W and Chu M W 2017 Phys. Rev. Lett. 119 157601
|
[10] |
Gao B, Huang F T, Wang Y, Kim J W, Wang L, Lim S J and Cheong S W 2017 Appl. Phys. Lett. 110 222906
|
[11] |
Glamazda A, Wulferding D, Lemmens P, Gao B, Cheong S W and Choi K Y 2018 Phys. Rev. B 97 094104
|
[12] |
Dewhurst J K, Sharma S and Nordstrom L 2009 Spacegroup Manual Version 1.1.4 (CEST), pp. 4-14
|
[13] |
Conway J H, Olaf D F, Huson D H and Thurston W P 2001 Beiträge Zur Algebra Und Geometrie. Contributions to Algebra and Geometry 42 475
|
[14] |
Liu M, Zhang Y, Lin L F, Lin L, Yang S, Li X, Wang Y, Li S, Yan Z, Wang X, Li X G, Dong S and Liu J M 2018 Appl. Phys. Lett. 113 022902
|
[15] |
Matar S F, Eyert V, Villesuzanne A and Whangbo M H 2007 Phys. Rev. B 76 054403
|
[16] |
Maccheshev J B, Williams H J, Sherwood R C and Potter J F 1968 J. Appl. Phys. 39 1206
|
[17] |
Harris A B 2011 Phys. Rev. B 84 064116
|
[18] |
Shen J Y, Johnston S, Shang S L and Anderson T 2002 J. Crystal Growth 240 6
|
[19] |
Zhang W and Tong P Q 2013 Chin. Phys. B 22 066201
|
[20] |
Huang H, Ma X, Liu Z and Ma X 2018 Chin. Phys. B 27 016201
|
[21] |
Yan P, Chong X Y, Jiang Y H and Feng J 2017 Chin. Phys. B 26 126202
|
[22] |
Nan C W, Bichurin M I, Dong S, Viehl, D and Srinivasan G 2008 J. Appl. Phys. 103 031101
|
[23] |
Kumar A, Scott J F, Martinez R, Srinivasan G and Katiyar R S 2012 Phys. Status Solidi A 209 1207
|
[24] |
Singh M K, Prellier W, Singh M P, Katiyar R S and Scott J F 2008 Phys. Rev. B 77 144403
|
[25] |
Du X, Wang Q, Belegundu U, Bhalla A and Uchino K 1999 Mater. Lett. 40 109
|
[26] |
Yue W and Jian J Y 2003 Opt. Mater. 23 403
|
[27] |
Jian G, Xue F, Zhang C, Yan C, Zhao N and Wong C P 2017 J. Magn. Magn. Mater. 442 141
|
[28] |
Guiblin N, Grebille D, Leligny H and Martin C 2002 Acta Crystallogr C 58 i3
|
[29] |
Newnham R E 2005 Properties of Materials. Anisotropy, Symmetry, Structure (Oxford: Oxford University Press), pp. 108-109
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|