Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088103    DOI: 10.1088/1674-1056/27/8/088103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Growth of high-quality perovskite (110)-SrIrO3 thin films using reactive molecular beam epitaxy

Kai-Li Zhang(张凯莉)1,2, Cong-Cong Fan(樊聪聪)1,2, Wan-Ling Liu(刘万领)3, Yu-Feng Wu(吴宇峰)1,2, Xiang-Le Lu(卢祥乐)1,2, Zheng-Tai Liu(刘正太)1,4, Ji-Shan Liu(刘吉山)1,4, Zhong-Hao Liu(刘中灏)1,4, Da-Wei Shen(沈大伟)1,4
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences(CAS), Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China;
4 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China
Abstract  

Recently, 5d transition metal iridates have been reported as promising materials for the manufacture of exotic quantum states. Apart from the semimetallic ground states that have been observed, perovskite SrIrO3 is also predicted to have a lattice-symmetrically protected topological state in the (110) plane due to its strong spin-orbit coupling and electron correlation. Compared with non-polar (001)-SrIrO3, the especial polarity of (110)-SrIrO3 undoubtedly adds the difficulty of fabrication and largely impedes the research on its surface states. Here, we have successfully synthesized high-quality (110)-SrIrO3 thin films on (110)-SrTiO3 substrates by reactive molecular beam epitaxy for the first time. Both reflection high-energy electron diffraction patterns and x-ray diffraction measurements suggest the expected orientation and outstanding crystallinity. A (1×2) surface reconstruction driven from the surface instability, the same as that reported in (110)-SrTiO3, is observed. The electric transport measurements uncover that (110)-SrIrO3 exhibits a more prominent semimetallic property in comparison to (001)-SrIrO3.

Keywords:  molecular beam epitaxy      iridates      topological crystalline metal      surface reconstruction  
Received:  01 May 2018      Revised:  20 May 2018      Accepted manuscript online: 
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  61.05.jh (Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: 

Project supported by the National Key Research and Development Program of the MOST of China (Grant No. 2016YFA0300204), the National Key Basic Research Program of China (Grant No. 2015CB654901), the National Natural Science Foundation of China (Grant Nos. 11574337, 11227902, 11474147, and 11704394), Shanghai Sailing Program (Grant No. 17YF1422900), and the Award for Outstanding Member in Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Corresponding Authors:  Da-Wei Shen     E-mail:  dwshen@mail.sim.ac.cn

Cite this article: 

Kai-Li Zhang(张凯莉), Cong-Cong Fan(樊聪聪), Wan-Ling Liu(刘万领), Yu-Feng Wu(吴宇峰), Xiang-Le Lu(卢祥乐), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Zhong-Hao Liu(刘中灏), Da-Wei Shen(沈大伟) Growth of high-quality perovskite (110)-SrIrO3 thin films using reactive molecular beam epitaxy 2018 Chin. Phys. B 27 088103

[1] Tian Z M, Kohama Y, Tomita T, Ishizuka H, Hsieh T H, Ishikawa J J, Kindo K, Balents L and Nakatsuji S 2016 Nat. Phys. 12 134
[2] Anderson T J, Ryu S, Zhou H, Xie L, Podkaminer J P, Ma Y, Irwin J, Pan X Q, Rzchowski M S and Eom C B 2016 Appl. Phys. Lett. 108 151604
[3] Groenendijk D J, Manca N, Mattoni G, Kootstra L, Gariglio S, Huang Y, Heumen E and Caviglia A D 2016 Appl. Phys. Lett. 109 041906
[4] Boseggia S, Springell R, Walker H C, Ronnow H M, R ü egg C, Okabe H, Isobe M, Perry R S, Collins S P and McMorrow D F 2013 Phys. Rev. Lett. 110 117207
[5] Takayama T, Kato A, Dinnebier R, Nuss J, Kono H, Veiga L S I, Fabbris G, Haskel D and Takagi H 2015 Phys. Rev. Lett. 114 077202
[6] Groenendijk D J, Autieri C, Girovsky J, Martinez-Velarte M C, Manca N, Mattoni G, Monteiro A M R V L, Gauquelin N, Verbeeck J, Otte A F, Gabay M, Picozzi S and Caviglia A D 2017 Phys. Rev. Lett. 119 256403
[7] Sch ü tz P, Di Sante D, Dudy L, Gabel J, St ü binger M, Kamp M, Huang Y, Capone M, Husanu M A, Strocov V N, Sangiovanni G, Sing M and Claessen R 2017 Phys. Rev. Lett. 119 256404
[8] Nie Y F, King P D C, Kim C H, Uchida M, Wei H I, Faeth B D, Ruf J P, Ruff J P C, Xie L, Pan X, Fennie C J, Schlom D G and Shen K M 2015 Phys. Rev. Lett. 114 016401
[9] Liu Z T, Li M Y, Li Q F, Liu J S, Li W, Yang H F, Yao Q, Fan C C, Wan X G, Wang Z and Shen D W 2016 Sci. Rep. 6 30309
[10] Carter J M, Shankar V V, Zeb M A and Kee H Y 2012 Phys. Rev. B 85 115105
[11] Zeb M A and Kee H Y 2012 Phys. Rev. B 86 085149
[12] Chen Y G, Kim H S and Kee H Y 2016 Phys. Rev. B 93 155140
[13] Fujioka J, Okawa T, Yamamoto A and Tokura Y 2017 Phys. Rev. B 95 121102
[14] Biswas A and Jeong Y H 2017 Curr. Appl. Phys. 17 605
[15] Chen Y G, Lu Y M and Kee H Y 2015 Nat. Commun. 6 6593
[16] Groenendijk D J, Manca N, Mattoni G, Kootstra L, Gariglio S, Huang Y, Heumen E V and Caviglia A D 2016 Appl. Phys. Lett. 109 041906
[17] Smith E H, Ihlefeld J F, Heikes C A, Paik H, Nie Y F, Adamo C, Heeg T, Liu Z K and Schlom D G 2017 Phys. Rev. Mater. 1 023403
[18] Savoia A, Paparo D, Perna P, Ristic Z, Salluzzo M, Granozio F M, Di Uccio U S, Richter C, Thiel S, Mannhart J and Marrucci L 2009 Phys. Rev. B 80 075110
[19] Yang H F, Liu Z T, Fan C C, Yao Q, Xiang P, Zhang K L, Li M Y, Liu J S and Shen D W 2016 AIP Adv. 6 085115
[20] Kotomin E A, Heifets E, Dorfman S, Fuks D, Gordon A and Maier J 2004 Surf. Sci. 566 231
[21] Brunen J and Zegenhagen J 1997 Surf. Sci. 389 349
[22] Gunhold A, Beuermann L, G ö mann K, Borchardt G, Kempter V, Maus-Friedrichs W, Piskunov S, Kotomin E A and Dorfman S 2003 Surf. Interface Anal. 35 998
[23] Biswas A, Kim K S and Jeong Y H 2014 J. Appl. Phys. 116 213704
[24] Kim Y K, Sumi A, Takahashi K, Yokoyama S, Ito S, Watanabe T, Akiyama K, Kaneko S, Saito K and Funakubo H 2005 Jpn. J. Appl. Phys. 45 L36
[25] Moon S J 2014 J. Korean Phys. Soc. 64 1174
[26] Zhang L Y, Liang Q F, Xiong Y, Zhang B B, Gao L, Li H D, Chen Y B, Zhou J, Zhang S T, Gu Z B, Yao S H, Wang Z M, Lin Y and Chen Y F 2015 Phys. Rev. B 91 035110
[27] Gruenewald J H, Nichols J, Terzic J, Cao G, Brill J W and Seo S S A 2014 J. Mater. Res. 29 2491
[28] Zhao J G, Yang L X, Yu Y, Li F Y, Yu R C, Fang Z, Chen L C and Jin C Q 2008 J. Appl. Phys. 103 103706
[29] Wu F X, Zhou J, Zhang L Y, Chen Y B, Zhang S T, Gu Z B, Yao S H and Chen Y F 2013 J. Phys.: Condens. Matter 25 125604
[30] Biswas A, Kim K S and Jeong Y H 2016 J. Magn. Magn. Mater. 400 36
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[5] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[6] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[7] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[8] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[9] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[10] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[11] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[12] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[13] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[14] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[15] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
No Suggested Reading articles found!