INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Growth of high-quality perovskite (110)-SrIrO3 thin films using reactive molecular beam epitaxy |
Kai-Li Zhang(张凯莉)1,2, Cong-Cong Fan(樊聪聪)1,2, Wan-Ling Liu(刘万领)3, Yu-Feng Wu(吴宇峰)1,2, Xiang-Le Lu(卢祥乐)1,2, Zheng-Tai Liu(刘正太)1,4, Ji-Shan Liu(刘吉山)1,4, Zhong-Hao Liu(刘中灏)1,4, Da-Wei Shen(沈大伟)1,4 |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences(CAS), Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China;
4 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China |
|
|
Abstract Recently, 5d transition metal iridates have been reported as promising materials for the manufacture of exotic quantum states. Apart from the semimetallic ground states that have been observed, perovskite SrIrO3 is also predicted to have a lattice-symmetrically protected topological state in the (110) plane due to its strong spin-orbit coupling and electron correlation. Compared with non-polar (001)-SrIrO3, the especial polarity of (110)-SrIrO3 undoubtedly adds the difficulty of fabrication and largely impedes the research on its surface states. Here, we have successfully synthesized high-quality (110)-SrIrO3 thin films on (110)-SrTiO3 substrates by reactive molecular beam epitaxy for the first time. Both reflection high-energy electron diffraction patterns and x-ray diffraction measurements suggest the expected orientation and outstanding crystallinity. A (1×2) surface reconstruction driven from the surface instability, the same as that reported in (110)-SrTiO3, is observed. The electric transport measurements uncover that (110)-SrIrO3 exhibits a more prominent semimetallic property in comparison to (001)-SrIrO3.
|
Received: 01 May 2018
Revised: 20 May 2018
Accepted manuscript online:
|
PACS:
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
61.05.jh
|
(Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
Fund: Project supported by the National Key Research and Development Program of the MOST of China (Grant No. 2016YFA0300204), the National Key Basic Research Program of China (Grant No. 2015CB654901), the National Natural Science Foundation of China (Grant Nos. 11574337, 11227902, 11474147, and 11704394), Shanghai Sailing Program (Grant No. 17YF1422900), and the Award for Outstanding Member in Youth Innovation Promotion Association of the Chinese Academy of Sciences. |
Corresponding Authors:
Da-Wei Shen
E-mail: dwshen@mail.sim.ac.cn
|
Cite this article:
Kai-Li Zhang(张凯莉), Cong-Cong Fan(樊聪聪), Wan-Ling Liu(刘万领), Yu-Feng Wu(吴宇峰), Xiang-Le Lu(卢祥乐), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Zhong-Hao Liu(刘中灏), Da-Wei Shen(沈大伟) Growth of high-quality perovskite (110)-SrIrO3 thin films using reactive molecular beam epitaxy 2018 Chin. Phys. B 27 088103
|
[1] |
Tian Z M, Kohama Y, Tomita T, Ishizuka H, Hsieh T H, Ishikawa J J, Kindo K, Balents L and Nakatsuji S 2016 Nat. Phys. 12 134
|
[2] |
Anderson T J, Ryu S, Zhou H, Xie L, Podkaminer J P, Ma Y, Irwin J, Pan X Q, Rzchowski M S and Eom C B 2016 Appl. Phys. Lett. 108 151604
|
[3] |
Groenendijk D J, Manca N, Mattoni G, Kootstra L, Gariglio S, Huang Y, Heumen E and Caviglia A D 2016 Appl. Phys. Lett. 109 041906
|
[4] |
Boseggia S, Springell R, Walker H C, Ronnow H M, R ü egg C, Okabe H, Isobe M, Perry R S, Collins S P and McMorrow D F 2013 Phys. Rev. Lett. 110 117207
|
[5] |
Takayama T, Kato A, Dinnebier R, Nuss J, Kono H, Veiga L S I, Fabbris G, Haskel D and Takagi H 2015 Phys. Rev. Lett. 114 077202
|
[6] |
Groenendijk D J, Autieri C, Girovsky J, Martinez-Velarte M C, Manca N, Mattoni G, Monteiro A M R V L, Gauquelin N, Verbeeck J, Otte A F, Gabay M, Picozzi S and Caviglia A D 2017 Phys. Rev. Lett. 119 256403
|
[7] |
Sch ü tz P, Di Sante D, Dudy L, Gabel J, St ü binger M, Kamp M, Huang Y, Capone M, Husanu M A, Strocov V N, Sangiovanni G, Sing M and Claessen R 2017 Phys. Rev. Lett. 119 256404
|
[8] |
Nie Y F, King P D C, Kim C H, Uchida M, Wei H I, Faeth B D, Ruf J P, Ruff J P C, Xie L, Pan X, Fennie C J, Schlom D G and Shen K M 2015 Phys. Rev. Lett. 114 016401
|
[9] |
Liu Z T, Li M Y, Li Q F, Liu J S, Li W, Yang H F, Yao Q, Fan C C, Wan X G, Wang Z and Shen D W 2016 Sci. Rep. 6 30309
|
[10] |
Carter J M, Shankar V V, Zeb M A and Kee H Y 2012 Phys. Rev. B 85 115105
|
[11] |
Zeb M A and Kee H Y 2012 Phys. Rev. B 86 085149
|
[12] |
Chen Y G, Kim H S and Kee H Y 2016 Phys. Rev. B 93 155140
|
[13] |
Fujioka J, Okawa T, Yamamoto A and Tokura Y 2017 Phys. Rev. B 95 121102
|
[14] |
Biswas A and Jeong Y H 2017 Curr. Appl. Phys. 17 605
|
[15] |
Chen Y G, Lu Y M and Kee H Y 2015 Nat. Commun. 6 6593
|
[16] |
Groenendijk D J, Manca N, Mattoni G, Kootstra L, Gariglio S, Huang Y, Heumen E V and Caviglia A D 2016 Appl. Phys. Lett. 109 041906
|
[17] |
Smith E H, Ihlefeld J F, Heikes C A, Paik H, Nie Y F, Adamo C, Heeg T, Liu Z K and Schlom D G 2017 Phys. Rev. Mater. 1 023403
|
[18] |
Savoia A, Paparo D, Perna P, Ristic Z, Salluzzo M, Granozio F M, Di Uccio U S, Richter C, Thiel S, Mannhart J and Marrucci L 2009 Phys. Rev. B 80 075110
|
[19] |
Yang H F, Liu Z T, Fan C C, Yao Q, Xiang P, Zhang K L, Li M Y, Liu J S and Shen D W 2016 AIP Adv. 6 085115
|
[20] |
Kotomin E A, Heifets E, Dorfman S, Fuks D, Gordon A and Maier J 2004 Surf. Sci. 566 231
|
[21] |
Brunen J and Zegenhagen J 1997 Surf. Sci. 389 349
|
[22] |
Gunhold A, Beuermann L, G ö mann K, Borchardt G, Kempter V, Maus-Friedrichs W, Piskunov S, Kotomin E A and Dorfman S 2003 Surf. Interface Anal. 35 998
|
[23] |
Biswas A, Kim K S and Jeong Y H 2014 J. Appl. Phys. 116 213704
|
[24] |
Kim Y K, Sumi A, Takahashi K, Yokoyama S, Ito S, Watanabe T, Akiyama K, Kaneko S, Saito K and Funakubo H 2005 Jpn. J. Appl. Phys. 45 L36
|
[25] |
Moon S J 2014 J. Korean Phys. Soc. 64 1174
|
[26] |
Zhang L Y, Liang Q F, Xiong Y, Zhang B B, Gao L, Li H D, Chen Y B, Zhou J, Zhang S T, Gu Z B, Yao S H, Wang Z M, Lin Y and Chen Y F 2015 Phys. Rev. B 91 035110
|
[27] |
Gruenewald J H, Nichols J, Terzic J, Cao G, Brill J W and Seo S S A 2014 J. Mater. Res. 29 2491
|
[28] |
Zhao J G, Yang L X, Yu Y, Li F Y, Yu R C, Fang Z, Chen L C and Jin C Q 2008 J. Appl. Phys. 103 103706
|
[29] |
Wu F X, Zhou J, Zhang L Y, Chen Y B, Zhang S T, Gu Z B, Yao S H and Chen Y F 2013 J. Phys.: Condens. Matter 25 125604
|
[30] |
Biswas A, Kim K S and Jeong Y H 2016 J. Magn. Magn. Mater. 400 36
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|