INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of FeS doping on large diamond synthesis in FeNi–C system |
Jian-Kang Wang(王健康)1, Shang-Sheng Li(李尚升)1, Quan-Wei Jiang(蒋全伟)1, Yan-Ling Song(宋艳玲)1, Kun-Peng Yu(于昆鹏)1, Fei Han(韩飞)1, Tai-Chao Su(宿太超)1, Mei-Hua Hu(胡美华)1, Qiang Hu(胡强)2, Hong-An Ma(马红安)3, Xiao-Peng Jia(贾晓鹏)3, Hong-Yu Xiao(肖宏宇)4 |
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 School of Physics & Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
3 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
4 Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China |
|
|
Abstract The large single-crystal diamond with FeS doping along the (111) face is synthesized from the FeNi-C system by the temperature gradient method (TGM) under high-pressure and high-temperature (HPHT). The effects of different FeS additive content on the shape, color, and quality of diamond are investigated. It is found that the (111) face of diamond is dominated and the (100) face of diamond disappears gradually with the increase of the FeS content. At the same time, the color of the diamond crystal changes from light yellow to gray-green and even gray-yellow. The stripes and pits corrosion on the diamond surface are observed to turn worse. The effects of FeS doping on the shape and surface morphology of diamond crystal are explained by the number of hang bonds in different surfaces of diamond. It can be shown from the test results of the Fourier transform infrared (FTIR) spectrum that there exists an S element in the obtained diamond. The N element content values in different additive amounts of diamond are calculated. The XPS spectrum results demonstrate that our obtained diamond contains S elements that exist in S-C and S-C-O forms in a diamond lattice. This work contributes to the further understanding and research of FeS-doped large single-crystal diamond characterization.
|
Received: 22 January 2018
Revised: 08 April 2018
Accepted manuscript online:
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
61.72.U-
|
(Doping and impurity implantation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51772120), the Project for Key Science and Technology Research of Henan Province, China (Grant Nos. 162102210275 and 172102210283), the Key Scientific Research Project in Colleges and Universities of Henan Province, China (Grant Nos. 18A430017 and 17A430020), and the Professional Practice Demonstration Base for Professional Degree Graduate in Material Engineering of Henan Polytechnic University, China (Grant No. 2016YJD03) |
Corresponding Authors:
Shang-Sheng Li
E-mail: lishsh@hpu.edu.cn
|
Cite this article:
Jian-Kang Wang(王健康), Shang-Sheng Li(李尚升), Quan-Wei Jiang(蒋全伟), Yan-Ling Song(宋艳玲), Kun-Peng Yu(于昆鹏), Fei Han(韩飞), Tai-Chao Su(宿太超), Mei-Hua Hu(胡美华), Qiang Hu(胡强), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏), Hong-Yu Xiao(肖宏宇) Effect of FeS doping on large diamond synthesis in FeNi–C system 2018 Chin. Phys. B 27 088102
|
[1] |
Bundy F P, Hall H T, Strong H M and Wentorf R H 1955 Nature 176 51
|
[2] |
Chen S T, Tsai M Y, Lai Y C and Liu CC 2009 J. Mater. Process. Technol. 209 4698
|
[3] |
Zhang G F, Zhang B, Deng Z H and Tan YQ 2010 Cirp Ann-Manuf. Technol. 59 355
|
[4] |
Strong H M and Chrenko R M 1971 J. Phys Chem. 75 1838
|
[5] |
Sakaguchi I, Gamo M N, Kikuchi Y, Yasu E and Haneda H 1999 Phys. Rev. B 60 2139
|
[6] |
Goss J, Briddon P, Jones R and Sque S 2004 Diamond Relat. Mater. 13 684
|
[7] |
Sque S, Jones R, Goss J and Briddon P 2004 Phys. Rev. Lett. 92 017402
|
[8] |
Anderson A B, Grantscharova E J and Angus J C 1996 Phys. Rev. B 54 14341
|
[9] |
Kato H, Yamasaki S and Okushi H 2005 Diamond Relat. Mater. 14 2007
|
[10] |
Luong J H, Male K B and Glennon J D 2009 Analyst 134 1965
|
[11] |
Eaton S C, Anderson A B, Angus J C, Evstefeeva Y E and Pleskov Y V 2003 Diamond Relat. Mater. 12 1627
|
[12] |
Hu X J, Hu H, Chen X H and Xu B 2011 Acta Phys. Sin. 60 068101 (in Chinese)
|
[13] |
Palyanov Y, Borzdov Y, Kupriyanov I, Khokhryakov A F and Nechaev D 2015 Crystengcomm. 17 4928
|
[14] |
Palyanov Y N, Kupriyanov I N, Sokol A G, Khokhryakov A F and Borzdov Y M 2011 Cryst. Growth Des. 11 2599
|
[15] |
Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y and Jia X P 2011 Chin. Phys. B 20 028103
|
[16] |
Gong C S, Li S S, Zhang H R, Su T C, Hu M H, Ma H A, Jia X P and Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 116
|
[17] |
Hasegawa M, Takeuchi D, Yamanaka S, Ogura M, Watanabe H and Kobayashi N 1999 Jpn. J. Appl. Phys. 38 L1519
|
[18] |
Yu P, Yu B, Kupriyanov I, Gusev V, Khokhryakov A and Sokol A 2001 Diamond Relat. Mater. 10 2145
|
[19] |
Sato K and Katsura T 2001 J. Cryst. Growth. 223 189
|
[20] |
Zhang H, Li S S, Su T C, Hu M H, Ma H A, Jia X P and Li Y 2017 Chin. Phys. B 26 058102
|
[21] |
Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A and Jia X P 2016 Chin. Phys. B 25 118104
|
[22] |
Liu Y, Samaha N T and Baker D R 2007 Geochim. Cosmochimi. Acta 71 1783
|
[23] |
Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M and Ma H A 2011 Chin. Phys. B 20 078103
|
[24] |
Zhou L, Jia X P, Ma H A, Zheng Y J and Li Y T 2008 Chin. Phys. B 17 4665
|
[25] |
Zang C Y, Jia X P, Ma H A, Li S S, Tian Y and Xiao H Y 2006 Chin. Phys. Lett. 23 214
|
[26] |
Huang G F, Jia X P, Li S S, Zhang Y F, Li Y, ZhaoM and Ma H A 2010 Chin. Phys. B 19 118101
|
[27] |
Chen N, Ma H A, Fang C, Li Y D, Liu X B, Zhou Z X and Jia X P 2017 Int. J. Refract. Met. Hard Mater. 66 122
|
[28] |
Zhang H, Li S S, Su T C, Hu M H, Zhou Y M, Fan H T, Gong C S, Jia X P, Ma H A and Xiao H Y 2015 Acta Phys. Sin. 64 198103 (in Chinese)
|
[29] |
Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y and Jia X P 2007 Diamond Relat. Mater. 16 283
|
[30] |
Gheeraert E, Casanova N, Tajani A, Deneuville A, Bustarret E, Garrido J A, Nebel C E and Stutzmann M 2002 Diamond Relat. Mater. 11 289
|
[31] |
Chen N, Ma H A, Chen L X, Yan B M, Fang C, Liu X B, Li Y D, Guo L S, Chen L C and Jia X P 2018 Int. J. Refract. Met. Hard Mater. 71 141
|
[32] |
Collins A T, Kanda H and Kitawaki H 2000 Diamond Relat. Mater. 9 113
|
[33] |
Zhang Y, Zang C, Ma H, Liang Z, Zhou L, Li S S and Jia X P 2008 Diamond Relat. Mater. 17 209
|
[34] |
Woods G S, VanWyk J A and Collins A T 1990 Philos. Mag. B 62 589
|
[35] |
Zhang H, Li S S, Li G H, Su T C, Hu M H, Ma H A, Jia X P and Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 26
|
[36] |
Maire J C, Baldy A, Boyer D, Liopiz P, Vernin G and Bachlas B P 1979 Cheminformatics 62 1566
|
[37] |
Hedman J, Baer Y, Berndtsson Y, Klasson M, Leonhardt G, Nilsson R and Nordling C 1973 J. Electron Spectrosc. 1 101
|
[38] |
Sugiyama S, Toshimitsu Minami A, Hayashi H, Tanaka M, Shigemoto N and Moffat J B 1996 Energy Fuel 10 828
|
[39] |
Kurmaev E Z, Fedorenko V V, Galakhov V R, Bartkowski S, Uhlenbrock S, Neumann M, Slater P R, Greaves C and Miyazaki Y 1996 J. Supercond. Nov. Magn. 9 97
|
[40] |
Volmer-Uebing M and Stratmann M 1992 Appl. Surf. Sci. 55 19
|
[41] |
Kaushik V K. 1991 J. Electron Spectrosc. 56 273
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|