Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117304    DOI: 10.1088/1674-1056/ac6eee
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance

Yinlu Gao(高寅露)1, Kai Cheng(程开)2,†, Xue Jiang(蒋雪)1, and Jijun Zhao(赵纪军)1,‡
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Dalian University of Technology), Ministry of Education, Dalian 116024, China;
2 School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  The GaN-based heterostructures are widely used in optoelectronic devices, but the complex surface reconstructions and lattice mismatch greatly limit the applications. The stacking of two-dimensional transition metal dichalcogenide (TMD = MoS2, MoSSe and MoSe2) monolayers on reconstructed GaN surface not only effectively overcomes the larger mismatch, but also brings about novel electronic and optical properties. By adopting the reconstructed GaN (0001) surface with adatoms (N-ter GaN and Ga-ter GaN), the influences of complicated surface conditions on the electronic properties of heterostructures have been investigated. The passivated N-ter and Ga-ter GaN surfaces push the mid-gap states to the valence bands, giving rise to small bandgaps in heterostructures. The charge transfer between Ga-ter GaN surface and TMD monolayers occurs much easier than that across the TMD/N-ter GaN interfaces, which induces stronger interfacial interaction and larger valence band offset (VBO). The band alignment can be switched between type-I and type-II by assembling different TMD monolayers, that is, MoS2/N-ter GaN and MoS2/Ga-ter GaN are type-II, and the others are type-I. The absorption of visible light is enhanced in all considered TMD/reconstructed GaN heterostructures. Additionally, MoSe2/Ga-ter GaN and MoSSe/N-ter GaN have larger conductor band offset (CBO) of 1.32 eV and 1.29 eV, respectively, extending the range from deep ultraviolet to infrared regime. Our results revel that the TMD/reconstructed GaN heterostructures may be used for high-performance broadband photoelectronic devices.
Keywords:  GaN-based device      surface reconstructions      transition metal dichalcogenide (TMD)      absorption spectra  
Received:  13 April 2022      Revised:  10 May 2022      Accepted manuscript online:  12 May 2022
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018004), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-697), the National Natural Science Foundation of China (Grant Nos. 11874097, 91961204, and 12004303), XinLiaoYingCai Project of Liaoning Province, China (Grant No. XLYC1905014), and Key Research and Development Project of Liaoning Province, China (Grant No. 2020JH2/10500003). We thank Supercomputing Center of Dalian University of Technology.
Corresponding Authors:  Kai Cheng, Jijun Zhao     E-mail:  chengkai_xiyou@163.com;zhaojj@dlut.edu.cn

Cite this article: 

Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军) Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance 2022 Chin. Phys. B 31 117304

[1] Nakamura S, Mukai T and Senoh M 1991 Jpn. J. Appl. Phys. 30 L1998
[2] Scholz F 2012 Semicond. Sci. Technol. 27 024002
[3] Zheng X F, Wang A C, Hou X H, Wang Y Z, Wen H Y, Wang C, Lu Y, Mao W, Ma X H and Hao Y 2017 Chin. Phys. Lett. 34 027301
[4] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[5] Kou L, Tang C, Zhang Y, Heine T, Chen C and Frauenheim T 2012 J. Phys. Chem. Lett. 3 2934
[6] Meng R, Jiang J, Liang Q, Yang Q, Tan C, Sun X and Chen X 2016 Sci. China-Mater. 59 1027
[7] Liao J, Sa B, Zhou J, Ahuja R and Sun Z 2014 J. Phys. Chem. C 118 17594
[8] Zhang Z, Qian Q, Li B and Chen K J 2018 ACS Appl. Mater. Interfaces 10 17419
[9] Miao J, Liu X, Jo K, He K, Saxena R, Song B, Zhang H, He J, Han M G, Hu W and Jariwala D 2020 Nano Lett. 20 2907
[10] Yu Y, Fong P W, Wang S and Surya C 2016 Sci. Rep. 6 37833
[11] Jain S K, Kumar R R, Aggarwal N, Vashishtha P, Goswami L, Kuriakose S, Pandey A, Bhaskaran M, Walia S and Gupta G 2020 ACS Appl. Electron. Mater. 2 710
[12] Kresse G and Furthmüler J 1996 Phys. Rev. B 54 11169
[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Schulz H and Thiemann K J S S C 1977 Solid State Commun. 23 815
[15] Ataca C, Sahin H and Ciraci S 2012 J. Phys. Chem. C 116 8983
[16] Li F, Wei W, Zhao P, Huang B and Dai Y 2017 J. Phys. Chem. Lett. 8 5959
[17] Vurgaftman I, Meyer J á and Ram-Mohan L á 2001 J. Appl. Phys. 89 5815
[18] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[19] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[20] Segev D and Van De Walle C G 2007 Surf. Sci. 601 L15
[21] Himmerlich M, Lymperakis L, Gutt R, Lorenz P, Neugebauer J and Krischok S 2013 Phys. Rev. B 88 125304
[22] Dreyer C E, Janotti A and Van De Walle C G 2014 Phys. Rev. B 89 081305
[23] Bermudez V 2017 Surf. Sci. Rep. 72 147
[24] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H and Yang Y 2017 Nat. Nanotech. 12 744
[25] Li Y H, Walsh A, Chen S, Yin W J, Yang J H, Li J, Da Silva J L, Gong X and Wei S H 2009 Appl. Phys. Lett. 94 212109
[26] Wei S H and Zunger A 1998 Appl. Phys. Lett. 72 2011
[27] Tangi M, Mishra P, Ng T K, Hedhili M N, Janjua B, Alias M S, Anjum D H, Tseng C C, Shi Y and Joyce H J 2016 Appl. Phys. Lett. 109 032104
[28] Wan Y, Xiao J, Li J, Fang X, Zhang K, Fu L, Li P, Song Z, Zhang H and Wang Y 2018 Adv. Mater. 30 1703888
[29] Malis O, Edmunds C, Manfra M and Sivco D 2009 Appl. Phys. Lett. 94 161111
[30] Martens M, Schlegel J, Vogt P, Brunner F, Lossy R, Würfl J, Weyers M and Kneissl M 2011 Appl. Phys. Lett. 98 211114
[31] Jie Yao Q W, Qing Yu Ma, Da Jian Wu 2017 Chin. Phys. B 26 57302
[32] Albo A, Fekete D and Bahir G 2019 Infrared Phys. Technol. 96 68
[33] Read A and Needs R 1991 Phys. Rev. B 44 13071
[1] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[2] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[3] Modulation and mechanism of ultrafast transient spectroscopy based on dimethylamino-carbaldehyde derivatives
Tong-xing Jin(金桐兴), Jun-yi Yang(杨俊义), Yu Fang(方宇), Yan-bing Han(韩艳兵), Ying-lin Song(宋瑛林). Chin. Phys. B, 2018, 27(5): 054208.
[4] Influence of nitrogen and magnesium doping on the properties of ZnO films
Dong-hua Li(李东华), Hui-Qiong Wang(王惠琼), Hua Zhou(周华), Ya-Ping Li(李亚平), Zheng Huang(黄政), Jin-Cheng Zheng(郑金成), Jia-Ou Wang(王嘉鸥), Hai-jie Qian(钱海杰), Kurash Ibrahim(奎热西), Xiaohang Chen(陈晓航), Huahan Zhan(詹华瀚), Yinghui Zhou(周颖慧), Junyong Kang(康俊勇). Chin. Phys. B, 2016, 25(7): 076105.
[5] TDDFT study of excitation of water molecules with short laser pulses
Wang Zhi-Ping (王志萍), Wu Ya-Min (吴亚敏), Zhang Xiu-Mei (张秀梅), Lu Chao (鲁超). Chin. Phys. B, 2013, 22(7): 073301.
[6] Manifestation of external field effect in time-resolved photo-dissociation dynamics of LiF
Meng Qing-Tian (孟庆田), A. J. C. Varandas. Chin. Phys. B, 2013, 22(7): 073303.
[7] Computer study of the water–ammonia clusters formation and their dielectric properties
Alexander Galashev. Chin. Phys. B, 2013, 22(7): 073601.
[8] A density-functional theory investigation on disorption of O2 on Sn(111) and its comparison with initial oxidation on the X(111) (X=Si, Ge, Sn, Pb) surfaces
Hu Zi-Yu (胡自玉), Wan Ping-Yu (万平玉), Hou Zhi-Ling (侯志灵), Shao Xiao-Hong (邵晓红). Chin. Phys. B, 2012, 21(12): 126803.
[9] Steady-state analysis of three-photon absorption spectra via density-matrix method in a three-coupled-quantum-well nanostructure
Deng Li(邓黎). Chin. Phys. B, 2010, 19(5): 054205.
[10] Solvent effects on the S0S2 absorption spectra of $\beta$-carotene
Liu Wei-Long(刘伟龙), Wang De-Min(王德敏), Zheng Zhi-Ren(郑植仁), Li Ai-Hua(李艾华), and Su Wen-Hui(苏文辉) . Chin. Phys. B, 2010, 19(1): 013102.
[11] Enhanced nonlinear optical absorption of Au/SiO2 nano-composite thin films
Zhao Cui-Hua(赵翠华),Zhang Bo-Ping(张波萍), and Shang Peng-Peng(尚鹏鹏) . Chin. Phys. B, 2009, 18(12): 5539-5543.
[12] The closed-orbit and the photoabsorption spectra of the Rydberg hydrogen atom between two parallel metallic surfaces
Wang De-Hua(王德华). Chin. Phys. B, 2007, 16(3): 692-699.
[13] Ab initio calculations for the absorption spectra and polarizabilities of small sulfur clusters
Bai Yu-Lin(白玉林), Chen Xiang-Rong(陈向荣), Cheng Xiao-Hong(程晓洪), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(3): 700-706.
[14] The influence of nickel dopant on the microstructure and optical properties of SnO2 nano-powders
Liu Chun-Ming(刘春明), Fang Li-Mei(方丽梅), Zu Xiao-Tao(祖小涛), and Zhou Wei-Lie(周伟列). Chin. Phys. B, 2007, 16(1): 95-99.
[15] The closed-orbit and the photoabsorption spectra of lithium atom in varying magnetic fields
Wang De-Hua (王德华), Ding Shi-Liang (丁世良). Chin. Phys. B, 2004, 13(1): 30-35.
No Suggested Reading articles found!