CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance |
Yinlu Gao(高寅露)1, Kai Cheng(程开)2,†, Xue Jiang(蒋雪)1, and Jijun Zhao(赵纪军)1,‡ |
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Dalian University of Technology), Ministry of Education, Dalian 116024, China; 2 School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract The GaN-based heterostructures are widely used in optoelectronic devices, but the complex surface reconstructions and lattice mismatch greatly limit the applications. The stacking of two-dimensional transition metal dichalcogenide (TMD = MoS2, MoSSe and MoSe2) monolayers on reconstructed GaN surface not only effectively overcomes the larger mismatch, but also brings about novel electronic and optical properties. By adopting the reconstructed GaN (0001) surface with adatoms (N-ter GaN and Ga-ter GaN), the influences of complicated surface conditions on the electronic properties of heterostructures have been investigated. The passivated N-ter and Ga-ter GaN surfaces push the mid-gap states to the valence bands, giving rise to small bandgaps in heterostructures. The charge transfer between Ga-ter GaN surface and TMD monolayers occurs much easier than that across the TMD/N-ter GaN interfaces, which induces stronger interfacial interaction and larger valence band offset (VBO). The band alignment can be switched between type-I and type-II by assembling different TMD monolayers, that is, MoS2/N-ter GaN and MoS2/Ga-ter GaN are type-II, and the others are type-I. The absorption of visible light is enhanced in all considered TMD/reconstructed GaN heterostructures. Additionally, MoSe2/Ga-ter GaN and MoSSe/N-ter GaN have larger conductor band offset (CBO) of 1.32 eV and 1.29 eV, respectively, extending the range from deep ultraviolet to infrared regime. Our results revel that the TMD/reconstructed GaN heterostructures may be used for high-performance broadband photoelectronic devices.
|
Received: 13 April 2022
Revised: 10 May 2022
Accepted manuscript online: 12 May 2022
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018004), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-697), the National Natural Science Foundation of China (Grant Nos. 11874097, 91961204, and 12004303), XinLiaoYingCai Project of Liaoning Province, China (Grant No. XLYC1905014), and Key Research and Development Project of Liaoning Province, China (Grant No. 2020JH2/10500003). We thank Supercomputing Center of Dalian University of Technology. |
Corresponding Authors:
Kai Cheng, Jijun Zhao
E-mail: chengkai_xiyou@163.com;zhaojj@dlut.edu.cn
|
Cite this article:
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军) Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance 2022 Chin. Phys. B 31 117304
|
[1] Nakamura S, Mukai T and Senoh M 1991 Jpn. J. Appl. Phys. 30 L1998 [2] Scholz F 2012 Semicond. Sci. Technol. 27 024002 [3] Zheng X F, Wang A C, Hou X H, Wang Y Z, Wen H Y, Wang C, Lu Y, Mao W, Ma X H and Hao Y 2017 Chin. Phys. Lett. 34 027301 [4] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [5] Kou L, Tang C, Zhang Y, Heine T, Chen C and Frauenheim T 2012 J. Phys. Chem. Lett. 3 2934 [6] Meng R, Jiang J, Liang Q, Yang Q, Tan C, Sun X and Chen X 2016 Sci. China-Mater. 59 1027 [7] Liao J, Sa B, Zhou J, Ahuja R and Sun Z 2014 J. Phys. Chem. C 118 17594 [8] Zhang Z, Qian Q, Li B and Chen K J 2018 ACS Appl. Mater. Interfaces 10 17419 [9] Miao J, Liu X, Jo K, He K, Saxena R, Song B, Zhang H, He J, Han M G, Hu W and Jariwala D 2020 Nano Lett. 20 2907 [10] Yu Y, Fong P W, Wang S and Surya C 2016 Sci. Rep. 6 37833 [11] Jain S K, Kumar R R, Aggarwal N, Vashishtha P, Goswami L, Kuriakose S, Pandey A, Bhaskaran M, Walia S and Gupta G 2020 ACS Appl. Electron. Mater. 2 710 [12] Kresse G and Furthmüler J 1996 Phys. Rev. B 54 11169 [13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [14] Schulz H and Thiemann K J S S C 1977 Solid State Commun. 23 815 [15] Ataca C, Sahin H and Ciraci S 2012 J. Phys. Chem. C 116 8983 [16] Li F, Wei W, Zhao P, Huang B and Dai Y 2017 J. Phys. Chem. Lett. 8 5959 [17] Vurgaftman I, Meyer J á and Ram-Mohan L á 2001 J. Appl. Phys. 89 5815 [18] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [19] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [20] Segev D and Van De Walle C G 2007 Surf. Sci. 601 L15 [21] Himmerlich M, Lymperakis L, Gutt R, Lorenz P, Neugebauer J and Krischok S 2013 Phys. Rev. B 88 125304 [22] Dreyer C E, Janotti A and Van De Walle C G 2014 Phys. Rev. B 89 081305 [23] Bermudez V 2017 Surf. Sci. Rep. 72 147 [24] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H and Yang Y 2017 Nat. Nanotech. 12 744 [25] Li Y H, Walsh A, Chen S, Yin W J, Yang J H, Li J, Da Silva J L, Gong X and Wei S H 2009 Appl. Phys. Lett. 94 212109 [26] Wei S H and Zunger A 1998 Appl. Phys. Lett. 72 2011 [27] Tangi M, Mishra P, Ng T K, Hedhili M N, Janjua B, Alias M S, Anjum D H, Tseng C C, Shi Y and Joyce H J 2016 Appl. Phys. Lett. 109 032104 [28] Wan Y, Xiao J, Li J, Fang X, Zhang K, Fu L, Li P, Song Z, Zhang H and Wang Y 2018 Adv. Mater. 30 1703888 [29] Malis O, Edmunds C, Manfra M and Sivco D 2009 Appl. Phys. Lett. 94 161111 [30] Martens M, Schlegel J, Vogt P, Brunner F, Lossy R, Würfl J, Weyers M and Kneissl M 2011 Appl. Phys. Lett. 98 211114 [31] Jie Yao Q W, Qing Yu Ma, Da Jian Wu 2017 Chin. Phys. B 26 57302 [32] Albo A, Fekete D and Bahir G 2019 Infrared Phys. Technol. 96 68 [33] Read A and Needs R 1991 Phys. Rev. B 44 13071 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|