Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088104    DOI: 10.1088/1674-1056/27/8/088104
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Novel graphene enhancement nanolaser based on hybrid plasmonic waveguides at optical communication wavelength

Zhengjie Xu(徐政杰)1, Jun Zhu(朱君)1,2, Wenju Xu(徐汶菊)1, Deli Fu(傅得立)1, Cong Hu(胡聪)2, Frank Jiang1
1 College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China;
2 Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  

Surface plasmon polariton (SPP) nanolaser, which can achieve an all-optical circuit, is a major research topic in the field of micro light source. In this study, we examine a novel SPP graphene nanolaser in an optoelectronic integration field. The proposed nanolaser consists of metallic silver, two-dimensional (2D) graphene and high refractive index semiconductor of indium gallium arsenide phosphorus. Compared with other metals, Ag can reduce the threshold and propagation loss. The SPP field, excited by coupling Ag and InGaAsP, can be enhanced by the 2D material of graphene. In the proposed nanolaser, the maximum value of propagation loss is approximately 0.055 dB/μ, and the normalized mode area is constantly less than 0.05, and the best threshold can achieve 3380 cm-1 simultaneously. Meanwhile, the proposed nanolaser can be fabricated by conventional materials and work in optical communication (1550 nm), which can be easily achieved with current nanotechnology. It is also an important method that will be used to overcome the challenges of high speed, miniaturization, and integration in optoelectronic integrated technology.

Keywords:  graphene      SPP nanolaser      optical communication  
Received:  07 December 2017      Revised:  02 January 2018      Accepted manuscript online: 
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.40.Lm (Deformation, plasticity, and creep)  
Fund: 

Project supported by the Guangxi Natural Science Foundation, China (Grant No. 2017GXNSFAA198261), the National Natural Science Foundation of China (Grant No. 61762018), the Guangxi Youth Talent Program, China (Grant No. F-KA16016), the Guangxi Normal University Key Program, China (Grant No. 2015ZD03), the Innovation Project of Guangxi Graduate Education, China (Grant Nos. XYCSZ2018082, XJGY201807, and XJGY201811), and the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, China (Grant No. YQ16206).

Corresponding Authors:  Jun Zhu, Frank Jiang     E-mail:  zhujun1985@gxnu.edu.cn;franksydney2008@qq.com

Cite this article: 

Zhengjie Xu(徐政杰), Jun Zhu(朱君), Wenju Xu(徐汶菊), Deli Fu(傅得立), Cong Hu(胡聪), Frank Jiang Novel graphene enhancement nanolaser based on hybrid plasmonic waveguides at optical communication wavelength 2018 Chin. Phys. B 27 088104

[1] Maier S A 2006 IEEE J. Sel. Top. Quantum Electron. 12 1671
[2] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[3] William L B, Dereux A and Ebbesen T W 2003 Nature 424 824
[4] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[5] Noginov M A, Zhu G and Belgrave A M 2009 Nature 460 1110
[6] Oulton R F, Sorger V J and Zentgraf T 2009 Nature 461 629
[7] Bian Y S, Zheng Z and Liu Y 2011 IEEE Photon. Tech. Lett. 23 884
[8] Bian Y S, Zheng Z and Zhao X 2013 Opt. Commun. 287 245
[9] Mu J W, Chen L and Li X 2013 Appl. Phys. Lett. 103 131107
[10] Babak O, Habib K and Sirous K 2015 Opt. Quantum Electron. 47 1791
[11] Tan Y, Zhang Han and Zhao C J 2015 Opt. Lett. 40 637
[12] Tan Y, Guo Z N and Ma L N 2016 Opt. Express 24 2858
[13] Chen X, Wang Y and Xiang Y J 2016 J. Lightwave. Technol. 34 4948
[14] Tan Y, Liu X B and He Z L 2017 ACS Photon. 4 1513
[15] Vakil A and Engheta N 2011 Nature 332 1291
[16] Gao W L, Shu J and Qiu C Y 2012 ACS Nano 6 7806
[17] Yan H G, Xia F N and Zhu W J 2011 ACS Nano 5 9854
[18] Li Z Q, Piao R Q and Zhao J J 2015 J. Opt. 17 125008
[19] Bian Y S, Zheng Z and Zhao X 2013 Opt. Commun. 287 245
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!