Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 026102    DOI: 10.1088/1674-1056/27/2/026102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays

Ying Wang(王莹)1, Xin-Hua Li(李新化)2,3
1. College of Electrical Engineering and Automation, Anhui University, Hefei 230601, China;
2. Key Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
3. Yuhuan Scientific and Technological Transformation Center, Chinese Academy of Sciences, Taizhou 317600, China
Abstract  The full potential of optical absorption property must be further cultivated before silicon (Si) semiconductor nanowire (NW) arrays become available for mainstream applications in optoelectronic devices. In this paper, we demonstrate both experimentally and theoretically that an SiO2 coating can substantially improve the absorption of light in Si NW arrays. When the transparent SiO2 shell is coated on the outer layer of Si NW, the incident light penetrates better into the absorbing NW core. We provide the detailed theoretical analysis by a combination of finite-difference time-domain (FDTD) analysis. It is demonstrated that increasing the thickness of the dielectric shell, we achieve 1.72 times stronger absorption in the NWs than in uncoated NWs.
Keywords:  nanowire      nanosphere lithography      finite-difference time-domain (FDTD)  
Received:  14 September 2017      Revised:  04 November 2017      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the Science and Technology Project of Zhejiang Province, China (Grant No. 2017C31120).
Corresponding Authors:  Xin-Hua Li     E-mail:  xinhuali@issp.ac.cn
About author:  61.46.Km; 71.35.Cc; 61.46.-w

Cite this article: 

Ying Wang(王莹), Xin-Hua Li(李新化) Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays 2018 Chin. Phys. B 27 026102

[1] Brongersma M L, Cui Y and Fan S 2014 Nat. Mater. 13 451
[2] Seo K, Yu Y J, Duane P, Zhu W, Park H, Wober M and Crozier K B 2013 ACS Nano 7 5539
[3] Li Q, Dang W and Hui D 2010 Acta Phys. Sin. 59 5851(in Chinese)
[4] Park Y, Drouard E, Daif O. E, Letartre X, Viktorovitch P, Fave A, Kaminski A, Lemiti M and Seassal C 2009 Opt. Express 17 14312
[5] Li X, Chen T, Zhou B, Liu G, Shi T, Wen L, Cao H and Wang Y Nanotechnology 28 185402
[6] Yeom J, Ratchford D, Field C R, Brintlinger T H and Pehrsson P E 2014 Adv. Funct. Mater. 24 106
[7] Sun L, Fan Y, Wang X, Agung S R and Zhang Q 2014 Nanotechnology 25 255302
[8] Hochbaum A I, Gargas D, Hwang Y J and Yang P 2009 Nano Lett. 9 3550
[9] The IoffePhysico-technical Institute, n, k database, http://www.ioffe.ru/SVA/NSM/nk/
[10] Sturmberg B C P, Dossou K B, Botten L C, Asatryan A A, Poulton C G, de Sterke C M and McPhedran R C 2011 Opt. Express 19 A1067
[11] Wen L, Li X, Zhao Z, Bu S, Zeng X, Huang J H and Wang Y 2012 Nanotechnology 23 505202
[12] Wen L, Zhao Z, Li X, Shen Y and Guo H 2011 Appl. Phys. Lett. 99 143116
[13] Wang W, Li X, Wen L, Liu G and Shi T 2014 Appl. Phys. Lett. 105 233115
[14] Wang B and Leu P W 2012 Opt. Lett. 37 3756
[15] Li X, Shi T, Liu G, Wen L, Zhou B and Wang Y 2015 Opt. Express 23 25316
[16] Bu S, Li X, Wen L, Zeng X and Zhao Y 2013 Appl. Phys. Lett. 102 031106
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[3] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[4] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[5] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[6] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[7] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[8] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[9] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[10] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[11] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[12] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[13] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[14] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[15] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
No Suggested Reading articles found!