CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Theoretical study on electronic structure and thermoelectric properties of PbSxTe1-x (x=0.25, 0.5, and 0.75) solid solution |
Yong Lu(鲁勇), Kai-yue Li(李开跃), Xiao-lin Zhang(张晓林), Yan Huang(黄艳), Xiao-hong Shao(邵晓红) |
Beijing University of Chemical Technology, College of Science, Beijing 100029, China |
|
|
Abstract The electronic structure and thermoelectric (TE) properties of PbSxTe1-x (x=0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann theory. The special quasi-random structure (SQS) method is used to model the solid solutions of PbSxTe1-x, which can produce reasonable electronic structures with respect to experimental results. The maximum zT value can reach 1.67 for p-type PbS0.75Te0.25 and 1.30 for PbS0.5Te0.5 at 800 K, respectively. The performance of p-type PbSxTe1-x is superior to the n-type ones, mainly attributed to the higher effective mass of the carriers. The zT values for PbSxTe1-x solid solutions are higher than that of pure PbTe and PbS, in which the combination of low thermal conductivity and high power factor play important roles.
|
Received: 12 September 2017
Revised: 28 October 2017
Accepted manuscript online:
|
PACS:
|
61.50.-f
|
(Structure of bulk crystals)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647010 and 11704020), the Higher Education and High-quality and World-class Universities (Grant No. PY201611), and the Fund for Disciplines Construction from Beijing University of Chemical Technology (Grant No. XK1702). |
Corresponding Authors:
Yong Lu, Xiao-hong Shao
E-mail: luy@mail.buct.edu.cn;shaoxh@mail.buct.edu.cn
|
About author: 61.50.-f; 72.15.Jf |
Cite this article:
Yong Lu(鲁勇), Kai-yue Li(李开跃), Xiao-lin Zhang(张晓林), Yan Huang(黄艳), Xiao-hong Shao(邵晓红) Theoretical study on electronic structure and thermoelectric properties of PbSxTe1-x (x=0.25, 0.5, and 0.75) solid solution 2018 Chin. Phys. B 27 026103
|
[1] |
Kanatzidis M G 2005 Acc. Chem. Res. 38 359
|
[2] |
Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
|
[3] |
Venkatasubramanian R, Colpitts T, O'Quinn B, Liu S, El-Masry N and Lamvik M 1999 Appl. Phys. Lett. 75 1104
|
[4] |
Harman T C, Taylor P J, Walsh M P and LaForge B E 2002 Science 297 2229
|
[5] |
Kanatzidis M G, Ahn K, Li C P and Uher C 2009 Chem. Mater. 21 1361
|
[6] |
Kanatzidis M G, Han M K, Hoang K, Kong H J, Pcionek R, Uher C, Paraskevopoulos K M and Mahanti S D 2008 Chem. Mater. 20 3512
|
[7] |
Luo P F, Li Y, Yang J, Xing J J, Zhang J Y, Wang C Y, Zhao X L, Luo J, Zhang W Q 2017 Chin. Phys. B 26 097201
|
[8] |
Zhang Y C, Liu J, Li Y, Chen Y F, Li J C, Su W B, Zhou Y C, Zhai J Z, Wang T, Wang C L 2017 Chin. Phys. B 26 107201
|
[9] |
Kanatzidis M G, Poudeu P F P, D'Angelo J, Kong H J, Downey A, Short J L, Pcionek R, Hogan T P and Uher C 2006 J. Am. Chem. Soc. 128 14347
|
[10] |
Kanatzidis M G, Arachchige I U, Wu J S and Dravid V P 2008 Adv. Mater. 20 3638
|
[11] |
Ravich Y I 1970 Semiconducting Lead Chalcogenides (Plenum)
|
[12] |
Pei Y, Wang H and Snyder G J 2012 Adv. Mater. 24 6125
|
[13] |
Bozin E S, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G and Billinge S J 2010 Science 330 1660
|
[14] |
Delaire O, Ma J, Marty K, May A F, McGuire M A, Du M H, Singh D J, Podlesnyak A, Ehlers G, Lumsden M D and Sales B C 2011 Nat. Mater. 10 614
|
[15] |
Dmitriev A V and Tkacheva E S 2014 Condens. Matter Phys. 69 243
|
[16] |
Wang J L, Wang H, Snyder G J, Zhang X, Ni Z H and Chen Y F 2013 J. Phys. D:Appl. Phys. 46 405301
|
[17] |
Jin R C, Chen G, Pei J and Yan C S 2012 New J. Chem. 36 2574
|
[18] |
Ibanez M, Zamani R, Gorsse S, Fan J D, Ortega S, Cadavid D, Morante J R, Arbiol J and Cabot A 2013 ACS Nano 7 2573
|
[19] |
Korkosz R J, Chasapis T C, Lo S H, Doak J W, Kim Y J, Wu C I, Hatzikraniotis E, Hogan T P, Seidman D N, Wolverton C, Dravid V P and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 3225
|
[20] |
Lu P X, Qu L B 2013 Chin. Phys. Lett. 30 017101
|
[21] |
Wang K J, Wang W, Zhang M H, Zhang X Q, Yang P, Liu B, Gao M, Huang D W, Zhang J R, Liu Y J, Wang X F, Wang F Q, He L, Xu Y B, Zhang R 2017 Chin. Phys. Lett. 34 026201
|
[22] |
Heremans J P, Jovovic V, Toberer W S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
|
[23] |
Androulakis J, Todorov I, He J Q, Chung D Y, Dravid V P and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 10920
|
[24] |
Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
|
[25] |
Doak J W, Wolverton C and Ozolins V 2015 Phys. Rev. B 92 174306
|
[26] |
Kim J, Kwon H, Kim J H, Roh K M, Shin D and Jang H D 2015 J. Alloys Compd. 619 788
|
[27] |
Xie Y P and Zhao S J 2011 Comput. Mater. Sci. 50 2586
|
[28] |
Chakraborty M, Spitaler J, Puschnig P and Ambrosch-Draxl C 2010 Comput. Phys. Commun. 181 913
|
[29] |
Kresse G and Furthmoller J 1999 Phys. Rev. B 54 11169
|
[30] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[31] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[32] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[33] |
Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
|
[34] |
Singh D J 2007 Phys. Rev. B 76 085110
|
[35] |
Parker D and Singh D J 2011 Phys. Rev. B 83 233206
|
[36] |
Parker D and Singh D J 2010 Phys. Rev. B 82 035204
|
[37] |
Madelung O et al. 1983 Numerical data and functional relationships in science and technology, Landolt-Bornstei, New Series (Berlin:Springer) Vol. 17
|
[38] |
Cohen M L and Chelikowsky J R 1989 Electronic structure and optical properties of semiconductors, Springer Series in Solids States Sciences, 2nd edn., Vol. 75(Berlin:Springer-Verlag)
|
[39] |
Delin A, Ravindran P, and Eriksson O 1998 Int. J. Quantum Chem. 69 349
|
[40] |
Pei Y L and Liu Y 2012 J. Alloys Compd. 514 40
|
[41] |
Bader R F W 1985 Acc. Chem Res. 18 9
|
[42] |
Lach-Hab M et al. 2002 J. Phys. Chem. Solids 63 833
|
[43] |
Zaoui A et al. 2009 Mater. Chem. Phys. 114 650
|
[44] |
Boukhris N, Meradji H, Korba S A, Drablia S, Ghemid S, and Hassan F E H 2014 Bull. Mater. Sci. 37 1159
|
[45] |
Girard S N, He J, Zhou X, Shoemaker D, Jaworski C M, Uher C, Dravid V P, Heremans J P, and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 16588
|
[46] |
Wang Y, Suna A, Mahler W, and Kasowski R 1987 J. Chem. Phys. 87 7315
|
[47] |
Wang N, Li H, Ba Y, Wang Y, Wan C, Fujinami K and Koumoto K 2010 J. Electron. Mater. 39 1777
|
[48] |
Li X X, Li J Q, Liu F S, Ao W Q, Li H T and Pan L C 2013 J. Alloys Compd. 547 86
|
[49] |
He J Q, Girard S N, Kanatzidis M G and Dravid V P 2010 Adv. Funct. Mater. 20 764
|
[50] |
Johnsen S, He J, Androulakis J, Dravid V P, Todorov I, Chung D Y, and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 3460
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|