Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 026103    DOI: 10.1088/1674-1056/27/2/026103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical study on electronic structure and thermoelectric properties of PbSxTe1-x (x=0.25, 0.5, and 0.75) solid solution

Yong Lu(鲁勇), Kai-yue Li(李开跃), Xiao-lin Zhang(张晓林), Yan Huang(黄艳), Xiao-hong Shao(邵晓红)
Beijing University of Chemical Technology, College of Science, Beijing 100029, China
Abstract  The electronic structure and thermoelectric (TE) properties of PbSxTe1-x (x=0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann theory. The special quasi-random structure (SQS) method is used to model the solid solutions of PbSxTe1-x, which can produce reasonable electronic structures with respect to experimental results. The maximum zT value can reach 1.67 for p-type PbS0.75Te0.25 and 1.30 for PbS0.5Te0.5 at 800 K, respectively. The performance of p-type PbSxTe1-x is superior to the n-type ones, mainly attributed to the higher effective mass of the carriers. The zT values for PbSxTe1-x solid solutions are higher than that of pure PbTe and PbS, in which the combination of low thermal conductivity and high power factor play important roles.
Keywords:  solid solution      electronic structure      thermoelectric properties  
Received:  12 September 2017      Revised:  28 October 2017      Accepted manuscript online: 
PACS:  61.50.-f (Structure of bulk crystals)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647010 and 11704020), the Higher Education and High-quality and World-class Universities (Grant No. PY201611), and the Fund for Disciplines Construction from Beijing University of Chemical Technology (Grant No. XK1702).
Corresponding Authors:  Yong Lu, Xiao-hong Shao     E-mail:  luy@mail.buct.edu.cn;shaoxh@mail.buct.edu.cn
About author:  61.50.-f; 72.15.Jf

Cite this article: 

Yong Lu(鲁勇), Kai-yue Li(李开跃), Xiao-lin Zhang(张晓林), Yan Huang(黄艳), Xiao-hong Shao(邵晓红) Theoretical study on electronic structure and thermoelectric properties of PbSxTe1-x (x=0.25, 0.5, and 0.75) solid solution 2018 Chin. Phys. B 27 026103

[1] Kanatzidis M G 2005 Acc. Chem. Res. 38 359
[2] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[3] Venkatasubramanian R, Colpitts T, O'Quinn B, Liu S, El-Masry N and Lamvik M 1999 Appl. Phys. Lett. 75 1104
[4] Harman T C, Taylor P J, Walsh M P and LaForge B E 2002 Science 297 2229
[5] Kanatzidis M G, Ahn K, Li C P and Uher C 2009 Chem. Mater. 21 1361
[6] Kanatzidis M G, Han M K, Hoang K, Kong H J, Pcionek R, Uher C, Paraskevopoulos K M and Mahanti S D 2008 Chem. Mater. 20 3512
[7] Luo P F, Li Y, Yang J, Xing J J, Zhang J Y, Wang C Y, Zhao X L, Luo J, Zhang W Q 2017 Chin. Phys. B 26 097201
[8] Zhang Y C, Liu J, Li Y, Chen Y F, Li J C, Su W B, Zhou Y C, Zhai J Z, Wang T, Wang C L 2017 Chin. Phys. B 26 107201
[9] Kanatzidis M G, Poudeu P F P, D'Angelo J, Kong H J, Downey A, Short J L, Pcionek R, Hogan T P and Uher C 2006 J. Am. Chem. Soc. 128 14347
[10] Kanatzidis M G, Arachchige I U, Wu J S and Dravid V P 2008 Adv. Mater. 20 3638
[11] Ravich Y I 1970 Semiconducting Lead Chalcogenides (Plenum)
[12] Pei Y, Wang H and Snyder G J 2012 Adv. Mater. 24 6125
[13] Bozin E S, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G and Billinge S J 2010 Science 330 1660
[14] Delaire O, Ma J, Marty K, May A F, McGuire M A, Du M H, Singh D J, Podlesnyak A, Ehlers G, Lumsden M D and Sales B C 2011 Nat. Mater. 10 614
[15] Dmitriev A V and Tkacheva E S 2014 Condens. Matter Phys. 69 243
[16] Wang J L, Wang H, Snyder G J, Zhang X, Ni Z H and Chen Y F 2013 J. Phys. D:Appl. Phys. 46 405301
[17] Jin R C, Chen G, Pei J and Yan C S 2012 New J. Chem. 36 2574
[18] Ibanez M, Zamani R, Gorsse S, Fan J D, Ortega S, Cadavid D, Morante J R, Arbiol J and Cabot A 2013 ACS Nano 7 2573
[19] Korkosz R J, Chasapis T C, Lo S H, Doak J W, Kim Y J, Wu C I, Hatzikraniotis E, Hogan T P, Seidman D N, Wolverton C, Dravid V P and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 3225
[20] Lu P X, Qu L B 2013 Chin. Phys. Lett. 30 017101
[21] Wang K J, Wang W, Zhang M H, Zhang X Q, Yang P, Liu B, Gao M, Huang D W, Zhang J R, Liu Y J, Wang X F, Wang F Q, He L, Xu Y B, Zhang R 2017 Chin. Phys. Lett. 34 026201
[22] Heremans J P, Jovovic V, Toberer W S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[23] Androulakis J, Todorov I, He J Q, Chung D Y, Dravid V P and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 10920
[24] Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[25] Doak J W, Wolverton C and Ozolins V 2015 Phys. Rev. B 92 174306
[26] Kim J, Kwon H, Kim J H, Roh K M, Shin D and Jang H D 2015 J. Alloys Compd. 619 788
[27] Xie Y P and Zhao S J 2011 Comput. Mater. Sci. 50 2586
[28] Chakraborty M, Spitaler J, Puschnig P and Ambrosch-Draxl C 2010 Comput. Phys. Commun. 181 913
[29] Kresse G and Furthmoller J 1999 Phys. Rev. B 54 11169
[30] Blochl P E 1994 Phys. Rev. B 50 17953
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[33] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[34] Singh D J 2007 Phys. Rev. B 76 085110
[35] Parker D and Singh D J 2011 Phys. Rev. B 83 233206
[36] Parker D and Singh D J 2010 Phys. Rev. B 82 035204
[37] Madelung O et al. 1983 Numerical data and functional relationships in science and technology, Landolt-Bornstei, New Series (Berlin:Springer) Vol. 17
[38] Cohen M L and Chelikowsky J R 1989 Electronic structure and optical properties of semiconductors, Springer Series in Solids States Sciences, 2nd edn., Vol. 75(Berlin:Springer-Verlag)
[39] Delin A, Ravindran P, and Eriksson O 1998 Int. J. Quantum Chem. 69 349
[40] Pei Y L and Liu Y 2012 J. Alloys Compd. 514 40
[41] Bader R F W 1985 Acc. Chem Res. 18 9
[42] Lach-Hab M et al. 2002 J. Phys. Chem. Solids 63 833
[43] Zaoui A et al. 2009 Mater. Chem. Phys. 114 650
[44] Boukhris N, Meradji H, Korba S A, Drablia S, Ghemid S, and Hassan F E H 2014 Bull. Mater. Sci. 37 1159
[45] Girard S N, He J, Zhou X, Shoemaker D, Jaworski C M, Uher C, Dravid V P, Heremans J P, and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 16588
[46] Wang Y, Suna A, Mahler W, and Kasowski R 1987 J. Chem. Phys. 87 7315
[47] Wang N, Li H, Ba Y, Wang Y, Wan C, Fujinami K and Koumoto K 2010 J. Electron. Mater. 39 1777
[48] Li X X, Li J Q, Liu F S, Ao W Q, Li H T and Pan L C 2013 J. Alloys Compd. 547 86
[49] He J Q, Girard S N, Kanatzidis M G and Dravid V P 2010 Adv. Funct. Mater. 20 764
[50] Johnsen S, He J, Androulakis J, Dravid V P, Todorov I, Chung D Y, and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 3460
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[11] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[12] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[13] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[14] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[15] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
No Suggested Reading articles found!