Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116803    DOI: 10.1088/1674-1056/26/11/116803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Improvement of sensitivity of graphene photodetectorby creating bandgap structure

Ni-Zhen Zhang(张倪侦)1, Meng-Ke He(何孟珂)1, Peng Yu(余鹏)1, Da-Hua Zhou(周大华)2
1. Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China;
2. Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Abstract  

Graphene has aroused large interest in optoelectronic applications because of its broad band absorption and ultrahigh electron mobility. However, the low absorption of 2.3% seriously limits its photoresponsivity and restricts the relevant applications. In this paper, a method to enhance the sensitivity of graphene photodetector is demonstrated by introducing electron trapping centers and creating a bandgap structure in graphene. The carrier lifetime obviously increases, and more carriers are collected by the electrodes. Compared with intrinsic graphene detector, the defective graphene photodetector possesses high photocurrent and low-driving-voltage, which gives rise to great potential applications in photodetector area.

Keywords:  graphene      photodetector      photocurrent      bandgap  
Received:  18 June 2017      Revised:  29 July 2017      Accepted manuscript online: 
PACS:  68.65.Pq (Graphene films)  
  78.67.Wj (Optical properties of graphene)  
  81.05.ue (Graphene)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51271210), the Chongqing Municipal Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2015jcyjBX0039), and the Foundation for the Creative Research Groups of Higher Education of Chongqing Municipality, China (Grant No. CXTDX201601016).

Corresponding Authors:  Peng Yu, Da-Hua Zhou     E-mail:  pengyu@cqnu.edu.cn;zhoudahua@cigit.ac.cn

Cite this article: 

Ni-Zhen Zhang(张倪侦), Meng-Ke He(何孟珂), Peng Yu(余鹏), Da-Hua Zhou(周大华) Improvement of sensitivity of graphene photodetectorby creating bandgap structure 2017 Chin. Phys. B 26 116803

[1] Shiue R J, Gao Y, Wang Y, Peng C, Robertson A D, Efetov D K, Assefa S, Koppens F H L, Hone J and Englund D 2015 Nano Lett. 15 7288
[2] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
[3] Kin F M and Jie S 2016 Nat. Phontonics 10 216
[4] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[5] Xia F, Mueller T, Lin Y, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[6] Guo N, Hu W, Jiang T, Gong F, Luo W, Qiu W, Wang P, Liu L, Wu S, Liao L, Chen X and Lu W 2016 Nanoscale 8 16065
[7] Wang Y B, Yin W H, Han Q, Yang X H, Ye H, Lv Q Q and Yin D D 2016 Chin. Phys. B 25 118103
[8] Wang Y B, Yin W H, Han Q, Yang X H, Ye H, Lv Q Q and Yin D D 2017 Chin. Phys. B 26 028101
[9] Du S, Lu W, Ali A, et al. 2017 Adv. Mater. 29 1700463
[10] Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G and Mueller T 2012 Nano Lett. 12 2773
[11] Shiue R J, Gan X, Gao Y, Li L, Yao X, Szep A, Walker D, Hone J and Englund D 2013 Appl. Phys. Lett. 103 241109
[12] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T and Mueller T 2013 Nat. Photonics 7 892
[13] Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y and Duan X 2011 Nat. Commun. 2 579
[14] Roy K, Padmanabhan M, Goswami S, Phanindra S T, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotechnol. 8 826
[15] Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H and Cho J H 2015 Adv. Mater. 27 41
[16] Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S and Bao Q 2015 ACS Nano 9 1886
[17] Sun Z, Liu Z,Li J, Tai G A, Lau S P and Yan F 2012 Adv. Mater. 24 5878
[18] Long M, Liu E, Wang P, et al. 2016 Nano Lett. 16 2254
[19] Zhang Y, Liu T, Meng B, Li X, Liang G, Hu X and Wang Q J 2013 Nat. Commun. 4 1811
[20] Jiao T, Wei D, Liu J, Sun W, Jia S, Zhang W, Feng Y, Shi H and Du C 2015 Rsc Adv. 5 73202
[21] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[22] Sukhovatkin V, Hinds S, Brzozowski L and Sargent E H 2009 Science 324 1542
[23] Sun Z and Chang H 2014 ACS Nano 8 4133
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[9] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[10] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[11] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[12] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[13] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[14] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!