CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate |
Lu Zhang(张璐), Hai-Yang Hong(洪海洋), Yi-Sen Wang(王一森), Cheng Li(李成), Guang-Yang Lin(林光杨), Song-Yan Chen(陈松岩), Wei Huang(黄巍), Jian-Yuan Wang(汪建元) |
Department of Physics, OSED, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China |
|
|
Abstract Polycrystalline Ge1-xSnx (poly-Ge1-xSnx) alloy thin films with high Sn content (> 10%) were fabricated by co-sputtering amorphous GeSn (a-GeSn) on Ge (100) wafers and subsequently pulsed laser annealing with laser energy density in the range of 250 mJ/cm2 to 550 mJ/cm2. High quality poly-crystal Ge0.90Sn0.10 and Ge0.82Sn0.18 films with average grain sizes of 94 nm and 54 nm were obtained, respectively. Sn segregation at the grain boundaries makes Sn content in the poly-GeSn alloys slightly less than that in the corresponding primary a-GeSn. The crystalline grain size is reduced with the increase of the laser energy density or higher Sn content in the primary a-GeSn films due to the booming of nucleation numbers. The Raman peak shift of Ge-Ge mode in the poly crystalline GeSn can be attributed to Sn substitution, strain, and disorder. The dependence of Raman peak shift of the Ge-Ge mode caused by strain and disorder in GeSn films on full-width at half-maximum (FWHM) is well quantified by a linear relationship, which provides an effective method to evaluate the quality of poly-Ge1-xSnx by Raman spectra.
|
Received: 28 June 2017
Revised: 29 July 2017
Accepted manuscript online:
|
PACS:
|
68.55.ag
|
(Semiconductors)
|
|
61.66.Dk
|
(Alloys )
|
|
81.15.Fg
|
(Pulsed laser ablation deposition)
|
|
74.62.En
|
(Effects of disorder)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61474094) and the National Basic Research Program of China (Grant No. 2013CB632103). |
Corresponding Authors:
Cheng Li
E-mail: lich@xmu.edu.cn
|
Cite this article:
Lu Zhang(张璐), Hai-Yang Hong(洪海洋), Yi-Sen Wang(王一森), Cheng Li(李成), Guang-Yang Lin(林光杨), Song-Yan Chen(陈松岩), Wei Huang(黄巍), Jian-Yuan Wang(汪建元) Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate 2017 Chin. Phys. B 26 116802
|
[1] |
Peŕez Ladroń de Guevara H, Rodríguez A G, Navarro-Contreras H and Vidal M A 2004 Appl. Phys. Lett. 84 4532
|
[2] |
Eckhardt C, Hummer K and Kresse G 2014 Phys. Rev. B 89 165201
|
[3] |
Li H F, Wang X X and Liu J F 2016 Appl. Phys. Lett. 108 10210
|
[4] |
Bhargava N, Coppinger M, Gupta J P, Wielunski L and Kolodzey J 2013 Appl. Phys. Lett. 103 041908
|
[5] |
Su S J, Wang W, Cheng B W, Zhang G Z, Hu W X, Xue C L, Zuo Y H and Wang Q M 2011 J. Cryst. Growth 317 43
|
[6] |
Tseng H H, Wu K Y, Li H, Mashanov V, Cheng H H, Sun G and Soref R A 2013 Appl. Phys. Lett. 102 182106
|
[7] |
Oehme M, Kostecki K, Arguirov T, Mussler G, Ye K, Gollhofer M, Schmid M, Kaschel M, Körner R A, Kittler M, Buca D, Kasper E and Schulze J 2014 IEEE Photonics Tech. Lett. 26 187
|
[8] |
Al-Kabi S, Ghetmiri S A, Margetis J, Pham T, Zhou Y Y, Dou W, Collier B, Quinde R, Du W, Mosleh A, Liu J F, Sun G, Soref R A, Tolle J, Li B H, Mortazavi M, Naseem H A and Yu S Q 2016 Appl. Phys. Lett. 109 171105
|
[9] |
Driesch N V D, Stange D, Wirths S, Mussler G, Holländer B, Ikonic Z, Hartmann J M, Stoica T, Mantl S, Grützmacher D and Buca D 2015 Chem. Mater. 27 4693
|
[10] |
Stange D, Wirths S, Geiger R, Schulte B C, Marzban B, Driesch N V D, Mussler G, Zabel T, Stoica T, Hartmann J M, Mantl S, Ikonic Z, Grützmacher D, Sigg H, Witzens J and Buca D 2016 ACS Photonics 3 1279
|
[11] |
Fang Y C, Chen K Y, Hsieh C H, Su C C and Wu Y H 2015 ACS Appl. Mater. Inter. 7 26374
|
[12] |
Gupta S, Simoen E, Loo R, Madia O, Lin D, Merckling C, Shimura Y, Conard T, Lauwaert J, Vrielinck H and Heyns M 2016 ACS Appl. Mater. Interfaces 8 13181
|
[13] |
Maeda T, Jevasuwan W, Hattori H, Uchida N, Miura S, Tanaka M, Santos N D M, Vantomme A, Locquet J P and Lieten R R 2015 J. Appl. Phys. 54 04DA07
|
[14] |
Kim M, Fan W J, Seo J H, Cho N, Liu S C, Geng D, Liu Y H, Gong S Q, Wang X D, Zhou W D and Ma Z Q 2015 Appl. Phys. Express 8 061301
|
[15] |
Kurosawa M, Taoka N, Sakashita M, Nakatsuka O, Miyao M and Zaima S 2013 Appl. Phys. Lett. 103 101904
|
[16] |
Zhang L, Wang Y S, Chen N L, Lin G Y, Li C, Huang W, Chen S Y, Xu J F and Wang J Y 2016 J. Non-Cryst. Solids 448 74
|
[17] |
Uchida N, Maeda T, Lieten R R, Okajima S, Ohishi Y, Takase R, Ishimaru M and Locquet J P 2015 Appl. Phys. Lett. 107 232105
|
[18] |
Thurmond C D, Trumbore F A and Kowalchik M 1956 J. Chem. Phys. 25 799
|
[19] |
Mahmodi H and Hashim M R 2017 Chin. Phys. B 26 056801
|
[20] |
Moto K, Matsumura R, Sadoh T, Ikenoue H and Miyao M 2016 Appl. Phys. Lett. 108 262105
|
[21] |
Stefanov S, Conde J C, Benedetti A, Serra C, Werner J, Oehme M, Schulze J, Buca D, Holländer B, Mantl S and Chiussi S 2012 Appl. Phys. Lett. 100 104101
|
[22] |
Lin H, Chen R, Huo Y, Kamins T I and Harris J S 2011 Appl. Phys. Lett. 98 261917
|
[23] |
Kim M, Seo J H, Yu Z, Zhou W D and Ma Z Q 2016 Appl. Phys. Lett. 109 051105
|
[24] |
Shahrjerdi D, Hekmatshoar B, Mohajerzadeh S S, Khakifirooz A and Robertson M 2004 J. Electeron. Mater. 33 4
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|