CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhancement of electroluminescent properties of organic optoelectronic integrated device by doping phosphorescent dye |
Shu-ying Lei(雷疏影)1,2, Jian Zhong(钟建)1,2, Dian-li Zhou(周殿力)1,2, Fang-yun Zhu(朱方云)1,2, Chao-xu Deng(邓朝旭)1,2 |
1. State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 610054, China; 2. School of Optoelectronic Information, University of Electronic Science and Technology of China(UESTC), Chengdu 610054, China |
|
|
Abstract Organic optoelectronic integrated devices (OIDs) with ultraviolet (UV) photodetectivity and different color emitting were constructed by using a thermally activated delayed fluorescence (TADF) material 4, 5-bis(carbazol-9-yl)-1, 2-dicyanobenzene (2CzPN) as host. The OIDs doping with typical red phosphorescent dye[tris(1-phenylisoquinoline)iridium(Ⅲ), Ir(piq)3], orange phosphorescent dye bis[2-(4-tertbutylphenyl)benzothiazolato-N, C2']iridium (acetylacetonate), (tbt)2Ir(acac), and blue phosphorescent dye[bis(2, 4-di-fluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(Ⅲ), FIr6] were investigated and compared. The (tbt)2Ir(acac)-doped orange device showed better performance than those of red and blue devices, which was ascribed to more effective energy transfer. Meanwhile, at a low dopant concentration of 3 wt.%, the (tbt)2Ir(acac)-doped OIDs showed the maximum luminance, current efficiency, power efficiency of 70786 cd/m2, 39.55 cd/A, and 23.92 lm/W, respectively, and a decent detectivity of 1.07×1011 Jones at a bias of-2 V under the UV-350 nm illumination. This work may arouse widespread interest in constructing high efficiency and luminance OIDs based on doping phosphorescent dye.
|
Received: 04 June 2017
Revised: 26 July 2017
Accepted manuscript online:
|
PACS:
|
70.60.Fi
|
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
73.61.Ph
|
(Polymers; organic compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61675041) and the National Science Funds for Creative Research Groups of China (Grant No. 61421002). |
Corresponding Authors:
Jian Zhong
E-mail: zhongjian@uestc.edu.cn
|
Cite this article:
Shu-ying Lei(雷疏影), Jian Zhong(钟建), Dian-li Zhou(周殿力), Fang-yun Zhu(朱方云), Chao-xu Deng(邓朝旭) Enhancement of electroluminescent properties of organic optoelectronic integrated device by doping phosphorescent dye 2017 Chin. Phys. B 26 117001
|
[1] |
Seino Y, Sasabe H, Pu Y J and Kido J 2014 Adv. Mater. 26 1612
|
[2] |
Ou Q D, Zhou L, Li Y Q, Shen S, Chen J D, Li C, Wang Q K, Lee S T and Tang J X 2014 Adv. Funct. Mater. 24 7249
|
[3] |
Zhou N, Lin H, Lou S J, Yu X, Guo P, Manley E F, Loser S, Hartnett P, Huang H, Wasielewski M R, Chen L X, Chang R P H, Facchetti A and Marks T J 2014 Adv. Energy Mater. 4 1300785
|
[4] |
Peng F, Zhao B F, Xu J, Zhang Y H, Fang Y W, He R F, Wu H B, Yang W and Cao Y 2016 Org. Electron. 29 151
|
[5] |
Choi E Y, Eom S H, Song C E, Nam S Y, Lee J, Woo H Y, Jung I H, Yoon S C and Lee C J 2017 Org. Electron. 46 173
|
[6] |
Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913
|
[7] |
Zhang Q S, Li B, Huang S P, Nomura H, Tanaka H and Adachi C 2014 Nat. Photon. 8 326
|
[8] |
Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B and Leo K 2009 Nature. 459 234
|
[9] |
Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
|
[10] |
Guo B, Wu G, Chen H Z and Wang M 2016 Org. Electron. 29 13
|
[11] |
Huang J, Wang H Y, Qi Y G and Yu J S 2014 Appl. Phys. Lett. 104 203301
|
[12] |
Aydemir M, Haykir G, Battal A, Jankus V, Sugunan S K, Dias F B, Al-Attar H, Türksoy F, Tavasli M and Monkman A P 2016 Org. Electron. 30 149
|
[13] |
Lu J S, Zheng Y, Chen Z J, Xiao L X and Gong Q H 2007 Appl. Phys. Lett. 91 201107
|
[14] |
Wang H Y, Zhou J, Wang X, Lu Z Y and Yu J S 2014 Appl. Phys. Lett. 105 063303
|
[15] |
Wang X, Zhou D L, Huang J and Yu J S 2015 Appl. Phys. Lett. 107 043303
|
[16] |
Ali F, Periasamy N, Patankar M P and Narasimhan K L 2011 J. Phys. Chem. C 115 2462
|
[17] |
Zhou D L, Zheng X J, Wang H Y, Huang J, Luo Y J, Zhou J, Yu J S and Lu Z Y 2016 Synth. Met. 220 323
|
[18] |
Wang Z J, Zhao J, Zhou C, Qi Y G and Yu J S 2017 Chin. Phys. B 26 047302
|
[19] |
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L and Huang W 2014 Adv. Mater. 26 7931
|
[20] |
Liu W, Zheng C J, Wang K, Zhang M, Chen D Y, Tao S L, Li F, Dong Y P, Lee C S, Ou X M and Zhang X H 2016 ACS Appl. Mater. Inter. 8 32984
|
[21] |
Chen J X, Liu W, Zheng C J, Wang K, Liang K, Shi Y Z, Ou X M and Zhang X H 2017 ACS Appl. Mater. Inter. 9 8848
|
[22] |
Zhou D L, Wang R, Guo H, Huang J and Yu J S 2017 Org. Electron. 41 355
|
[23] |
Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E and Forrest S R 1998 Nature 395 151
|
[24] |
Adachi C, Baldo M A, Thompson M E and Forrest S R 2001 J. Appl. Phys. 90 5048
|
[25] |
Sasabe H, Takamatsu J, Motoyama T, Watanabe S, Wagenblast G, Langer N, Molt O, Fuchs E, Lennartz C and Kido J 2010 Adv. Mater. 22 5003
|
[26] |
Wang X, Zhou J, Zhao J, Lu Z Y and Yu J S 2015 Org. Electron. 21 78
|
[27] |
Zhang D D, Duan L, Li Y L, Zhang D Q and Qiu Y 2014 J. Mater. Chem. C 2 8191
|
[28] |
Zhang D D, Duan L, Zhang D Q, Qiao J, Dong G F, Wang L D and Qiu Y 2013 Org. Electron. 14 260
|
[29] |
Qi Y G, Zhao J, Wang X, Yu J S and Chi Z G 2016 Org. Electron. 36 185
|
[30] |
Lao Y F, Perera A G U, Li L H, Khanna S P, Linfield E H and Liu H C 2014 Nat. Photon. 8 412
|
[31] |
Wei X Q, Peng J B, Cheng J B, Xie M G, Lu Z Y, Li C and Cao Y 2007 Adv. Funct. Mater. 17 3319
|
[32] |
Fang Y J, Guo F W, Xiao Z G and Huang J S 2014 Adv. Opt. Mater. 2 348
|
[33] |
Tsai M H, Lin H W, Su H C, Ke T H, Wu C C, Fang F C, Liao Y L, Wong K T and Wu C I 2006 Adv. Mater. 18 1216
|
[34] |
Liu Z, Lei Y, Fan C J, Peng X F, Ji X X, Jabbour G E and Yang X H 2017 Org. Electron. 41 237
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|