Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067502    DOI: 10.1088/1674-1056/26/6/067502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides

Lei Xu(许磊)1,2, Jin-Liang Zhao(赵金良)2, Jing-Jie Yang(杨静洁)2, Hong-Guo Zhang(张红国)1, Dan-Min Liu(刘丹敏)3, Ming Yue(岳明)1, Yi-Jian Jang(蒋毅坚)4
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2 College of Applied Sciences, Beijing University of Technology, Beijing 100124, China;
3 Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China;
4 Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  In this paper, we study the effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides. The powder x-ray diffraction patterns of the La1-xPrxFe11.4Si1.6 and its hydrides show that each of the alloys is crystallized into the single phase of cubic NaZn13-type structure. There are hydrogen-absorbing plateaus under 0.4938 MPa and 0.4882 MPa in the absorbing curves for the La0.8Pr0.2Fe11.4Si1.6 and La0.6Pr0.4Fe11.4Si1.6 compounds. The releasing processes lag behind the absorbing process, which is obviously different from the coincidence between absorbing and releasing curves of the LaFe11.4Si1.6 compound. The remnant hydrogen content for La0.6Pr0.4Fe11.4Si1.6 is significantly more than that for La0.8Pr0.2Fe11.4Si1.6 after hydrogen desorption, indicating that more substitutions of Pr for La are beneficial to retaining more hydrogen atoms in the alloys. The values of maximum magnetic entropy change are 14.91 J/kg·K and 17.995 J/kg·K for La0.8Pr0.2Fe11.4Si1.6H0.13 and La0.6Pr0.4Fe11.4Si1.6H0.87, respectively.
Keywords:  La (Fe      Si)13 compounds      hydrogenating process      magnetocaloric effect      magnetic refrigeration materials  
Received:  16 November 2016      Revised:  14 March 2017      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.-y (Studies of specific magnetic materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51301008 and 51171003) and the Beijing Natural Science Foundation, China (Grant No. 1112005).
Corresponding Authors:  Jin-Liang Zhao, Ming Yue     E-mail:  zhaojingliang@bjut.edu.cn;yueming@bjut.edu.cn

Cite this article: 

Lei Xu(许磊), Jin-Liang Zhao(赵金良), Jing-Jie Yang(杨静洁), Hong-Guo Zhang(张红国), Dan-Min Liu(刘丹敏), Ming Yue(岳明), Yi-Jian Jang(蒋毅坚) Effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides 2017 Chin. Phys. B 26 067502

[1] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Pecharsky V K and Gschneider K A Jr 1997 Phys. Rev. Lett. 78 4494
[3] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
[4] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[5] Shen B G, Hu F X, Dong Q Y and Sun J R 2013 Chin. Phys. B 22 017502
[6] Liu D M, Huang Q Z, Yue M, Lynn J W, Liu L J, Chen Y, Wu Z H and Zhang J X 2009 Phys. Rev. B 80 174415
[7] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[8] Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X and Liu X B 2009 J. Appl. Phys. 105 07A915
[9] Zhang D K, Zhao J L, Zhang H G, Xu M F and Yue M 2014 J. Supe. Nov. Magn. 27 1899
[10] Zhang H and Shen B G 2015 Chin. Phys. B 24 127504
[11] Shen B G, Z W L and Hu F X 2015 Chin. Phys. B 24 097104
[12] Shen B G, Sun J R. Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[13] Santana R P, Oliveira de N A and Ranke von P J 2011 J. Alloys Compd. 509 6346
[14] Yan A, Müller K H and Gutfleisch O 2008 J. Alloys. Compds. 450 18
[15] Shen J, Gao B, Yan L Q, Li Y X, Zhang H W, Hu F X and Sun J R 2007 Chin. Phys. 16 3848
[16] Shen J, Li Y X, Zhang J, Gao B, Hu F X, Zhang H W, Chen Y Z, Rong C B and Sun J R 2008 J. Appl. Phys. 103 07B317
[17] Balli M, Rosca M, Fruchart D and Gignoux D 2009 J. Magn. Magn. Mater. 321 123
[18] Xie S H, Lia J Q and Zhuang Y H 2007 J. Magn. Magn. Mater. 311 589
[19] Chen Y F, Wang F, Shen B G, Wang G J and Sun J R 2003 J. Appl. Phys. 93 1323
[20] Balli M, Fruchart D and Gignoux D 2008 Appl. Phys. Lett. 92 232505
[21] Chen Y F, Wang F, Shen B G, Hu F X, Sun J R, Wang G J and Cheng Z H 2003 J. Phys.: Condens. Matter 15 L161
[22] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
[23] Podgornykh S M and Shcherbakova Y V 2006 Phys. Rev. B 73 184421
[24] Lyubina J, Nenkov K, Schultz L and Gutfleisch O 2008 Phys. Rev. Lett. 101 177203
[25] Rosca M, Balli M, Fruchart D, Gignoux D, Hlil E K, Miraglia S, Ouladdiaf B and Wolfers P 2010 J. Alloys Compd. 490 50
[26] Zhao J L, Zhang H G and Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese)
[27] Liu X B, Altounian Z and Beath A D 2004 J. Appl. Phys. 95 7067
[28] Martin M, Gommel C, Borkhart C and Fromm E 1996 J. Alloys Compd. 238 193
[29] Wang G F, Mu L J, Zhang X F, Zhao Z R and Huang J H 2014 J. Appl. Phys. 115 143903
[30] Thanh Cam DT, Bruck E, Tegus O, Klaasse J C P, Gortenmulder T J and Buschow K H J 2006 J. Appl. Phys. 99 08Q107
[31] Xu L, Zhao J L, Zhang D K, Zhang H G and Yue M 2015 J. Alloys Compd. 651 8
[32] Zhao J L, Shen J, Hu F X, Li Y X, Sun J R and Shen B G 2010 J. Appl. Phys. 107 113911
[33] Fujita A, Akamatsu Y and Fukamichi K 1999 J. Appl. Phys. 85 4756
[34] Fujita A, Fujieda S and Fukamichi K 2006 J. Appl. Phys. 99 08K910
[35] Thanh Cam D T, Brück E, Tegus O, Klaasse J C P, Gortenmulder T J and Buschow K H J 2006 J. Appl. Phys. 99 08Q107
[36] Fujii H and Sun H 1995 in Handbook of Magnetic Materials, edited by Buschow K H J (Amsterdam: Elsevier), Vol. 9, pp. 303-404
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!