Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067501    DOI: 10.1088/1674-1056/26/6/067501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Kosterlitz-Thouless transition, spectral property and magnetic moment for a two-dot structure with level difference

Yong-Chen Xiong(熊永臣)1,2, Wang-Huai Zhou(周望怀)1, Jun Zhang(张俊)1, Nan Nan(南楠)1
1 School of Science and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, China;
2 Department of Physics, Faculty of Science, National University of Singapore, Singapore 117551, Republic of Singapore
Abstract  

By means of the numerical renormalization group method, we study the phase transition, the spectral property, and the temperature-dependent magnetic moment for a parallel double dot system with level difference, where the dot energies are kept symmetric to the half-filled level. A Kosterlitz-Thouless (KT) transition between local spin triplet and singlet is found. In the triplet regime, the local spin is partially screened by the conduction leads and spin-1 Kondo effect is realized. While for the singlet, the Kondo peak is strongly suppressed and the magnetic moment decreases to 0 at a definite low temperature. We attribute this KT transition to the breaking of the reflection symmetry, resulting from the difference of the charge occupations of the two dots. To understand this KT transition and related critical phenomena, detailed scenarios are given in the transmission coefficient and the magnetic moment, and an effective Kondo model refers to the Rayleigh-Schrödinger perturbation theory is used.

Keywords:  double dot Structure      Kosterlitz-Thouless transition      numerical renormalization group      strongly correlated effect  
Received:  03 January 2017      Revised:  24 March 2017      Accepted manuscript online: 
PACS:  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
  73.63.Kv (Quantum dots)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11504102), the Special Fund for Theoretical Physics of the National Natural Science Foundation of China (Grant No. 11647133), the Doctoral Scientific Research Foundation of China (Grant No. BK201407), and the Major Scientific Research Project Pre-funds of Hubei University of Automotive Technology, China (Grant No. 2014XY06).

Corresponding Authors:  Yong-Chen Xiong     E-mail:  xiongyc_lx@huat.edu.cn

Cite this article: 

Yong-Chen Xiong(熊永臣), Wang-Huai Zhou(周望怀), Jun Zhang(张俊), Nan Nan(南楠) Kosterlitz-Thouless transition, spectral property and magnetic moment for a two-dot structure with level difference 2017 Chin. Phys. B 26 067501

[1] Prinz G A 1998 Science 282 1660
[2] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes K L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[3] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[4] Bader S D and Parkin S S P 2010 Ann. Rev. Condens. Matter Phys. 1 71
[5] DiVincenzo D P 2005 Science 309 2173
[6] Fujita T, Jalil M B A, Tan S G and Murakami S 2011 J. Appl. Phys. 110 121301
[7] Chung C H and Hofstetter W 2007 Phys. Rev. B 76 045329
[8] Hofstetter W and Schoeller H 2001 Phys. Rev. Lett. 88 016803
[9] Wang W Z 2011 Phys. Rev. B 83 075314
[10] Žitko R and Bonča J 2006 Phys. Rev. B 74 045312
[11] Xiong Y C, Luo S J, Huang H M and Yang J T 2015 J. Supercond. Nov. Magn. 28 2553
[12] Georges A and Meir Y 1999 Phys. Rev. Lett. 82 3508
[13] Izumida W and Sakai O 2000 Phys. Rev. B 62 10260
[14] López R, Aguado R and Platero G 2002 Phys. Rev. Lett. 89 136802
[15] Mravlje J, Ramšak A and Rejec T 2006 Phys. Rev. B 73 241305
[16] Borda L, Zarand G, Hofstetter W, Halperin B I and Delft J V 2003 Phys. Rev. Lett. 90 026602
[17] Wang X and Millis A J 2010 Phys. Rev. B 81 045106
[18] Boese D, Hofstetter W and Schoeller H 2002 Phys. Rev. B 66 125315
[19] Büsser C A, Martins G B, Al-Hassanieh K A, Moreo A and Dagotto E 2004 Phys. Rev. B 70 245303
[20] Meden V and Marquardt F 2006 Phys. Rev. Lett. 96 146801
[21] Lu H Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 235320
[22] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71 205313
[23] Zitko R 2010 Phys. Rev. B 81 115316
[24] Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M 2009 Chin. Phys. B 18 783
[25] Cornaglia P S and Grempel D R 2005 Phys. Rev. B 71 075305
[26] Ribeiro L C, Vernek E, Martins G B and Anda E V 2012 Phys. Rev. B 85 165401
[27] Andrade J A, Cornaglia P S and Aligia A A 2014 Phys. Rev. B 89 115110
[28] Huang R, Wu S Q and Hou T 2012 Commun. Theor. Phys. 57 161
[29] Vojta M, Bulla R and Hofstetter W 2002 Phys. Rev. B 65 140405
[30] Wang W Z 2011 Nanotechnology 22 205203
[31] Wang W Z 2008 Phys. Rev. B 78 235316
[32] Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
[33] Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
[34] Costi T A, Hewson A C and Zlatiá V 1994 J. Phys.: Condens. Matter 6 2519
[35] Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
[36] Hofstetter W 2000 Phys. Rev. Lett. 85 1508
[37] Bulla R, Costi T A and Vollhardt D 2001 Phys. Rev. B 64 045103
[38] Weichselbaum A and von Delft J 2007 Phys. Rev. Lett. 99 076402
[39] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
[40] Haldane F D M 1978 J. Phys. C 11 5015
[41] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[1] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[2] Phase transition and charge transport through a triple dot device beyond the Kondo regime
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东). Chin. Phys. B, 2018, 27(10): 108503.
[3] Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device
Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref. Chin. Phys. B, 2017, 26(9): 097102.
[4] Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060501.
[5] Dynamical correlation functions of the quadratic coupling spin-Boson model
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060502.
[6] Kondo effect for electron transport through an artificial quantum dot
Sun Ke-Wei (孙科伟), Xiong Shi-Jie (熊诗杰). Chin. Phys. B, 2006, 15(4): 828-832.
[7] FLUCTUATIONS OF FLUX LINES ON THE SURFACE OF SUPERCONDUCTOR
Liu Jun-jun (刘钧钧), Gan Zi-zhao (甘子钊). Chin. Phys. B, 2000, 9(12): 934-943.
No Suggested Reading articles found!