Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 056801    DOI: 10.1088/1674-1056/26/5/056801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate

H Mahmodi1, M R Hashim2
1 Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Penang, Malaysia;
2 Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 USM, Pulau Penang, Malaysia
Abstract  In this study, Ge1-xSnx alloy films are co-sputtered on Si(100) substrates using RF magnetron sputtering at different substrate temperatures. Scanning electron micrographs, atomic force microscopy (AFM), Raman spectroscopy, and x-ray photoemission spectroscopy (XPS) are conducted to investigate the effect of substrate temperature on the structural and optical properties of grown GeSn alloy films. AFM results show that RMS surface roughness of the films increases from 1.02 to 2.30 nm when raising the substrate temperature. This increase could be due to Sn surface segregation that occurs when raising the substrate temperature. Raman spectra exhibits the lowest FWHM value and highest phonon intensity for a film sputtered at 140 ℃. The spectra show that decreasing the deposition temperature to 140 ℃ improves the crystalline quality of the alloy films and increases nanocrystalline phase formation. The results of Raman spectra and XPS confirm Ge-Sn bond formation. The optoelectronic characteristics of fabricated metal-semiconductor-metal photodetectors on sputtered samples at room temperature (RT) and 140 ℃ are studied in the dark and under illumination. The sample sputtered at 140 ℃ performs better than the RT sputtered sample.
Keywords:  GeSn      magnetron sputtering      Raman scattering      x-ray photoemission spectroscopy  
Received:  14 October 2016      Revised:  26 January 2017      Accepted manuscript online: 
PACS:  68.55.ag (Semiconductors)  
  68.55.-a (Thin film structure and morphology)  
  74.25.nd (Raman and optical spectroscopy)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
Fund: Project supported by the Universiti Sains Malaysia (Grant No. 1001/PFIZIK/846072).
Corresponding Authors:  H Mahmodi     E-mail:  hadi.mahmodi@gmail.com

Cite this article: 

H Mahmodi, M R Hashim Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate 2017 Chin. Phys. B 26 056801

[1] Oehme M, Widmann D, Kostecki K, Zaumseil P, Schwartz B, Gollhofer M, Koerner R, Bechler S, Kittler M, Kasper E and Schulze J 2014 Opt. Lett. 39 4711
[2] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D and Grützmacher D 2015 Nat. Photon. 9 88
[3] Du W, Hou Z, Ghetmiri S A, Mosleh A, Conley B R, Nazzal A, Soref R A, Sun G, Tolle J, Margetis J, Naseem H A and Yu S Q 2014 Appl. Phys. Lett. 104 241110
[4] Baert B, Gupta S, Gencarelli F, Loo R, Simoen E and Nguyen N D 2015 Solid-State Electron. 110 65
[5] Conley B R, Mosleh A, Ghetmiri S A, Du W, Soref R A, Sun G, Margetis J, Tolle J, Naseem H A and Yu S Q 2014 Opt. Express 22 15639
[6] Zheng J, Wang S, Liu Z, Cong H, Xue C, Li C, Zuo Y, Cheng B and Wang Q 2016 Appl. Phys. Lett. 108 033503
[7] Thurmond C D, Trumbore F A and Kowalchik M 1956 J. Chem. Phys. 25 799
[8] Pukite P R, Harwit A and Iyer S S 1989 Appl. Phys. Lett. 54 2142
[9] Wang W, Su S, Zheng J, Zhang G, Xue C, Zuo Y, Cheng B and Wang Q 2011 Appl. Surf. Sci. 257 4468
[10] Nikolenko A S, Strelchuk V V, Safriuk N V, Kryvyi S B, Kladko V P, Oberemok O S, Borkovska L V and Sadofyev Y G 2015 Thin Solid Films 613 68
[11] Gencarelli F, Shimura Y, Kumar A, Vincent B, Moussa A, Vanhaeren D, Richard O, Bender H, Vandervorst W, Caymax M, Loo R and Heyns M 2015 Thin Solid Films 590 163
[12] Soref R, Kouvetakis J, Tolle J, Menendez J and D'Costa V 2007 J. Mater. Res. 22 3281
[13] G. Ming-Wei, Y. Chao, W. Xiang-Ying, H. Yi-Song, G. Jia-Min, Y. Pei-Fang, 2016 Chin. Phys. B 25 075202
[14] de Guevara H P L, Rodriguez A G, Navarro-Contreras H and Vidal M A 2003 Appl. Phys. Lett. 83 4942
[15] Tsukamoto T, Hirose N, Kasamatsu A, Mimura T, Matsui T and Suda Y 2015 J. Mater. Sci. 50 4366
[16] Zhang X J, Yuan H M, Wang Q P, Wang T and Ma H L 2010 Chin. Phys. B 19 018102
[17] Li G F, Hu J, Lv H, Cui Z J, Hou X W, Liu S B and Du Y Q 2016 Chin. Phys. B 25 027304
[18] Samavati A, Ghoshal S K and Othaman Z 2012 Chin. Phys. Lett. 29 048101
[19] Zhou J J, Jiang R L, Sha J, Liu J, Shen B, Zhang R and Zheng Y D 2003 Chin. Phys. 12 785
[20] Reinhardt K A and Kern W 2008 William Andrew
[21] Taoka N, Asano T, Yamaha T, Terashima T, Nakatsuka O, Costina I, Zaumseil P, Capellini G, Zaima S and Schroeder T 2015 Appl. Phys. Lett. 106 061107
[22] Harwit A, Pukite P R, Angilello J and Iyer S S 1990 Thin Solid Films 184 395
[23] Wegscheider W, Olajos J, Menczigar U, Dondl W and Abstreiter G 1992 J. Cryst. Growth 123 75
[24] D'Costa V R, Tolle J, Poweleit C D, Kouvetakis J and Menéndez J 2007 Phys. Rev. B 76 035211
[25] D'Costa V R, Tolle J, Roucka R, Poweleit C D, Kouvetakis J and Menéndez J 2007 Solid State Commun. 144 240
[26] Oehme M, Buca D, Kostecki K, Wirths S, Hollánder B, Kasper E and Schulze J 2013 J. Cryst. Growth 384 71
[27] Fournier-Lupien J H, Mukherjee S, Wirths S, Pippel E, Hayazawa N, Mussler G, Hartmann J M, Desjardins P, Buca D and Moutanabbir O 2013 Appl. Phys. Lett. 103 263103
[28] Li H, Brouillet J, Salas A, Wang X and Liu J 2013 Opt. Mater. Express 3 1385
[29] Lieten R R, Fleischmann C, Peters S, Santos N M, Amorim L M, Shimura Y, Uchida N, Maeda T, Nikitenko S, Conard T, Locquet J P, Temst K and Vantomme A 2014 ECS J. Solid State Sci. Tech. 3 403
[30] Tsang J C, Mooney P M, Dacol F and Chu J O 1994 J. Appl. Phys. 75 8098
[31] Hossain M Z and Johnson H T 2010 J. Appl. Phys. 107 1
[32] Sorianello V, Colace L, Assanto G and Nardone M 2011 Microelectron. Eng. 88 492
[33] Hirofumi F, Hiroaki M, Toshio N, Takeshi I and Yukio O 1986 Jpn J. Appl. Phys. 25 1312
[34] Molle A, Bhuiyan M N K, Tallarida G and Fanciulli M 2006 Appl. Phys. Lett. 89 083504
[35] Zhang D, Liao Y, Li J, Wen T, Jin L, Wang X and Kolodzey J 2016 J. Alloy. Compound. 684 643
[36] Castain J 1992 Hand Book of x-ray Photoelectron Spectroscopy (Minnesota, USA: Perkin-Elmer Corp.)
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[6] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[7] GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model
Xin-Miao Zhu(朱鑫淼), Min Cui(崔敏), Yu Wang(汪宇), Tian-Jing Yu(于添景),Jin-Xiang Deng(邓金祥), and Hong-Li Gao(高红丽). Chin. Phys. B, 2022, 31(5): 058801.
[8] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[9] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[10] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[11] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[12] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[13] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[14] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[15] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
No Suggested Reading articles found!