CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate |
H Mahmodi1, M R Hashim2 |
1 Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Penang, Malaysia; 2 Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 USM, Pulau Penang, Malaysia |
|
|
Abstract In this study, Ge1-xSnx alloy films are co-sputtered on Si(100) substrates using RF magnetron sputtering at different substrate temperatures. Scanning electron micrographs, atomic force microscopy (AFM), Raman spectroscopy, and x-ray photoemission spectroscopy (XPS) are conducted to investigate the effect of substrate temperature on the structural and optical properties of grown GeSn alloy films. AFM results show that RMS surface roughness of the films increases from 1.02 to 2.30 nm when raising the substrate temperature. This increase could be due to Sn surface segregation that occurs when raising the substrate temperature. Raman spectra exhibits the lowest FWHM value and highest phonon intensity for a film sputtered at 140 ℃. The spectra show that decreasing the deposition temperature to 140 ℃ improves the crystalline quality of the alloy films and increases nanocrystalline phase formation. The results of Raman spectra and XPS confirm Ge-Sn bond formation. The optoelectronic characteristics of fabricated metal-semiconductor-metal photodetectors on sputtered samples at room temperature (RT) and 140 ℃ are studied in the dark and under illumination. The sample sputtered at 140 ℃ performs better than the RT sputtered sample.
|
Received: 14 October 2016
Revised: 26 January 2017
Accepted manuscript online:
|
PACS:
|
68.55.ag
|
(Semiconductors)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
82.80.Pv
|
(Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))
|
|
Fund: Project supported by the Universiti Sains Malaysia (Grant No. 1001/PFIZIK/846072). |
Corresponding Authors:
H Mahmodi
E-mail: hadi.mahmodi@gmail.com
|
Cite this article:
H Mahmodi, M R Hashim Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate 2017 Chin. Phys. B 26 056801
|
[1] |
Oehme M, Widmann D, Kostecki K, Zaumseil P, Schwartz B, Gollhofer M, Koerner R, Bechler S, Kittler M, Kasper E and Schulze J 2014 Opt. Lett. 39 4711
|
[2] |
Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D and Grützmacher D 2015 Nat. Photon. 9 88
|
[3] |
Du W, Hou Z, Ghetmiri S A, Mosleh A, Conley B R, Nazzal A, Soref R A, Sun G, Tolle J, Margetis J, Naseem H A and Yu S Q 2014 Appl. Phys. Lett. 104 241110
|
[4] |
Baert B, Gupta S, Gencarelli F, Loo R, Simoen E and Nguyen N D 2015 Solid-State Electron. 110 65
|
[5] |
Conley B R, Mosleh A, Ghetmiri S A, Du W, Soref R A, Sun G, Margetis J, Tolle J, Naseem H A and Yu S Q 2014 Opt. Express 22 15639
|
[6] |
Zheng J, Wang S, Liu Z, Cong H, Xue C, Li C, Zuo Y, Cheng B and Wang Q 2016 Appl. Phys. Lett. 108 033503
|
[7] |
Thurmond C D, Trumbore F A and Kowalchik M 1956 J. Chem. Phys. 25 799
|
[8] |
Pukite P R, Harwit A and Iyer S S 1989 Appl. Phys. Lett. 54 2142
|
[9] |
Wang W, Su S, Zheng J, Zhang G, Xue C, Zuo Y, Cheng B and Wang Q 2011 Appl. Surf. Sci. 257 4468
|
[10] |
Nikolenko A S, Strelchuk V V, Safriuk N V, Kryvyi S B, Kladko V P, Oberemok O S, Borkovska L V and Sadofyev Y G 2015 Thin Solid Films 613 68
|
[11] |
Gencarelli F, Shimura Y, Kumar A, Vincent B, Moussa A, Vanhaeren D, Richard O, Bender H, Vandervorst W, Caymax M, Loo R and Heyns M 2015 Thin Solid Films 590 163
|
[12] |
Soref R, Kouvetakis J, Tolle J, Menendez J and D'Costa V 2007 J. Mater. Res. 22 3281
|
[13] |
G. Ming-Wei, Y. Chao, W. Xiang-Ying, H. Yi-Song, G. Jia-Min, Y. Pei-Fang, 2016 Chin. Phys. B 25 075202
|
[14] |
de Guevara H P L, Rodriguez A G, Navarro-Contreras H and Vidal M A 2003 Appl. Phys. Lett. 83 4942
|
[15] |
Tsukamoto T, Hirose N, Kasamatsu A, Mimura T, Matsui T and Suda Y 2015 J. Mater. Sci. 50 4366
|
[16] |
Zhang X J, Yuan H M, Wang Q P, Wang T and Ma H L 2010 Chin. Phys. B 19 018102
|
[17] |
Li G F, Hu J, Lv H, Cui Z J, Hou X W, Liu S B and Du Y Q 2016 Chin. Phys. B 25 027304
|
[18] |
Samavati A, Ghoshal S K and Othaman Z 2012 Chin. Phys. Lett. 29 048101
|
[19] |
Zhou J J, Jiang R L, Sha J, Liu J, Shen B, Zhang R and Zheng Y D 2003 Chin. Phys. 12 785
|
[20] |
Reinhardt K A and Kern W 2008 William Andrew
|
[21] |
Taoka N, Asano T, Yamaha T, Terashima T, Nakatsuka O, Costina I, Zaumseil P, Capellini G, Zaima S and Schroeder T 2015 Appl. Phys. Lett. 106 061107
|
[22] |
Harwit A, Pukite P R, Angilello J and Iyer S S 1990 Thin Solid Films 184 395
|
[23] |
Wegscheider W, Olajos J, Menczigar U, Dondl W and Abstreiter G 1992 J. Cryst. Growth 123 75
|
[24] |
D'Costa V R, Tolle J, Poweleit C D, Kouvetakis J and Menéndez J 2007 Phys. Rev. B 76 035211
|
[25] |
D'Costa V R, Tolle J, Roucka R, Poweleit C D, Kouvetakis J and Menéndez J 2007 Solid State Commun. 144 240
|
[26] |
Oehme M, Buca D, Kostecki K, Wirths S, Hollánder B, Kasper E and Schulze J 2013 J. Cryst. Growth 384 71
|
[27] |
Fournier-Lupien J H, Mukherjee S, Wirths S, Pippel E, Hayazawa N, Mussler G, Hartmann J M, Desjardins P, Buca D and Moutanabbir O 2013 Appl. Phys. Lett. 103 263103
|
[28] |
Li H, Brouillet J, Salas A, Wang X and Liu J 2013 Opt. Mater. Express 3 1385
|
[29] |
Lieten R R, Fleischmann C, Peters S, Santos N M, Amorim L M, Shimura Y, Uchida N, Maeda T, Nikitenko S, Conard T, Locquet J P, Temst K and Vantomme A 2014 ECS J. Solid State Sci. Tech. 3 403
|
[30] |
Tsang J C, Mooney P M, Dacol F and Chu J O 1994 J. Appl. Phys. 75 8098
|
[31] |
Hossain M Z and Johnson H T 2010 J. Appl. Phys. 107 1
|
[32] |
Sorianello V, Colace L, Assanto G and Nardone M 2011 Microelectron. Eng. 88 492
|
[33] |
Hirofumi F, Hiroaki M, Toshio N, Takeshi I and Yukio O 1986 Jpn J. Appl. Phys. 25 1312
|
[34] |
Molle A, Bhuiyan M N K, Tallarida G and Fanciulli M 2006 Appl. Phys. Lett. 89 083504
|
[35] |
Zhang D, Liao Y, Li J, Wen T, Jin L, Wang X and Kolodzey J 2016 J. Alloy. Compound. 684 643
|
[36] |
Castain J 1992 Hand Book of x-ray Photoelectron Spectroscopy (Minnesota, USA: Perkin-Elmer Corp.)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|