Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 056301    DOI: 10.1088/1674-1056/26/5/056301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, electronic, and magnetic behaviors of 5d transition metal atom substituted divacancy graphene: A first-principles study

Rafique Muhammad1,2, Yong Shuai(帅永)1, He-Ping Tan1, Hassan Muhammad1
1 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2 Mehran University of Engineering and Technology, S.Z.A.B, Campus Khairpur Mir's, Sindh, Pakistan
Abstract  

Structural, electronic, and magnetic behaviors of 5d transition metal (TM) atom substituted divacancy (DV) graphene are investigated using first-principles calculations. Different 5d TM atoms (Hf, Ta, W, Re, Os, Ir, and Pt) are embedded in graphene, these impurity atoms replace 2 carbon atoms in the graphene sheet. It is revealed that the charge transfer occurs from 5d TM atoms to the graphene layer. Hf, Ta, and W substituted graphene structures exhibit a finite band gap at high symmetric K-point in their spin up and spin down channels with 0.783 μB, 1.65 μB, and 1.78 μB magnetic moments, respectively. Ir and Pt substituted graphene structures display indirect band gap semiconductor behavior. Interestingly, Os substituted graphene shows direct band gap semiconductor behavior having a band gap of approximately 0.4 eV in their spin up channel with 1.5 μB magnetic moment. Through density of states (DOS) analysis, we can predict that d orbitals of 5d TM atoms could be responsible for introducing ferromagnetism in the graphene layer. We believe that our obtained results provide a new route for potential applications of dilute magnetic semiconductors and half-metals in spintronic devices by employing 5d transition metal atom-doped graphene complexes.

Keywords:  first-principles      grapheme      magnetic moment      doping  
Received:  30 December 2016      Revised:  13 February 2017      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.Pr (Electronic structure of graphene)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51522601 and 51421063) and the Program for New Century Excellent Talents in University, China (Grant No. NCET-13-0173).

Corresponding Authors:  Yong Shuai     E-mail:  shuaiyong@hit.edu.cn

Cite this article: 

Rafique Muhammad, Yong Shuai(帅永), He-Ping Tan, Hassan Muhammad Structural, electronic, and magnetic behaviors of 5d transition metal atom substituted divacancy graphene: A first-principles study 2017 Chin. Phys. B 26 056301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S V and Geim A K 2005 Proc. Natl. Am. Sci. USA 102 10451
[3] Guinea F, Peres N, Novoselov K S, Geim A K and Neto A C 2009 Rev. Mod. Phys. 81 109
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M, Grigorieva I, Dubonos S V and Firsov A A 2005 Nature 438 197
[5] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[6] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[7] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[8] Bolotin K I, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Solid State Commun. 146 351
[9] Ohno H 1998 Science 281 951
[10] Dietl T 2010 Nat. Mater. 9 965
[11] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
[12] Coey J, Venkatesan M and Fitzgerald C 2005 Nat. Mater. 4 173
[13] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[14] Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Yoshida H K and Dinh V 2010 Rev. Mod. Phys. 82 1633
[15] Zunger A, Lany S and Raebiger H 2010 Physics 3 53
[16] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[17] Sarma S D, Adam S, Hwang E and Rossi E 2011 Rev. Mod. Phys. 83 407
[18] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[19] Banhart F, Kotakoski J and Krasheninnikov A V 2010 ACS nano 5 26
[20] Kotakoski J, Krasheninnikov A V, Kaiser U and Meyer J 2011 Phys. Rev. Lett. 106 105505
[21] Han W, Pi K, McCreary K, Li Y, Wong J J, Swartz A and Kawakami R 2010 Phys. Rev. Lett. 105 167202
[22] Yazyev O V and Katsnelson M 2008 Phys. Rev. Lett. 100 047209
[23] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and Van Wees B J Nature 448 571
[24] Sahin H and Peeters F M 2013 Phys. Rev. B 87 085423
[25] Lisenkov S, Andriotis A N and Menon M 2012 Phys. Rev. Lett. 108 187208
[26] Lee A T, Kang J, Wei S H, Chang K and Kim Y H 2012 Phys. Rev. B 86 165403
[27] Sun M, Tang W, Ren Q, Wang S, Du Y and Zhang Y 2015 Appl. Surf. Sci. 356 668
[28] Krasheninnikov A, Lehtinen P, Foster A S, Pyykkö P and Nieminen R M 2009 Phys. Rev. Lett. 102 126807
[29] Boukhvalov D and Katsnelson M 2009 Appl. Phys. Lett. 95 023109
[30] Santos E J, Sánchez-Portal D and Ayuela A 2010 Phys. Rev. B 81 125433
[31] Nelayev V V and Mironchik A I 2010 Mater. Phys. Mech. 9 26
[32] Santos E J, Ayuela A and Sánchez-Portal D 2010 New J. Phys. 12 053012
[33] Lu Y F, Lo S T, Lin J C, Zhang W, Lu J Y, Liu F H, Tseng C M, Lee Y H, Liang C T and Li L J 2013 ACS Nano 7 6522
[34] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K and Balicas L 2010 Nat. Mater 9 430
[35] Zhan D, Sun J, Ni Z H, Liu L, Fan X F, Wang Y, Yu T, Lam Y M, Huang W and Shen Z X 2010 Adv. Funct. Mater. 20 3504
[36] Farmer D B, Mojarad R G, Perebeinos V, Lin Y M, Tulevski G S, Tsang J C and Avouris P 2008 Nano Lett. 9 388
[37] Bangert U, Pierce W, Kepaptsoglou D, Ramasse Q, Zan R, Gass M, Van den Berg J, Boothroyd C, Amani J and Hofsass H 2013 Nano Lett. 13 4902
[38] Rodriíguez-Manzo J A, Cretu O and Banhart F 2010 ACS Nano 4 3422
[39] Robertson A W, Montanari B, He K, Kim J, Allen C S, Wu Y A, Olivier J, Neethling J, Harrison N and Kirkland A I 2013 Nano Lett. 13 1468
[40] He Z, He K, Robertson A W, Kirkland A I, Kim D, Ihm J, Yoon E, Lee G D and Warner J H 2014 Nano Lett. 14 3766
[41] Santos E J, Ayuela A, Fagan S, Mendes Filho j, Azevedo D, Souza Filho A and Sánchez-Portal D 2008 Phys. Rev. B 78 195420
[42] Kang J, Deng H X, Li S S and Li J 2011 J. Phys.: Condens. Matter 23 346001
[43] Wu M, Cao C and Jiang J 2010 New J. Phys. 12 063020
[44] Rafique R, Shuai Y, Tan H P and Muhammad H 2014 Appl. Surf. Sci. 399 20
[45] Zhang H, Lazo C, Blügel S, Heinze S and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802
[46] Hu J, Alicea J, Wu R and Franz M 2012 Phys. Rev. Lett. 109 266801
[47] Beljakov I, Meded V, Symalla F, Fink K, Shallcross S, Ruben M and Wenzel W 2014 Nano Lett. 14 3364
[48] Zólyomi V, Rusznyák A, Kurti J and Lambert C 2010 J. Phys. Chem. C 114 18548
[49] Habenicht B F, Teng D, Flecha L S, Shol D S and Xu Y 2014 Top. CataL. 57 69
[50] Sun M, Wang S, Du Y, Yu J and Tang W 2016 Appl. Surf. Sci. 389 594
[51] Sun M, Hao Y, Ren Q, Zhao Y, Du Y and Tang W 2016 Solid State Commun. 242 36
[52] Sun M, Tang W, Ren Q, Wang S K, Yu J and Du Y 2015 Appl. Surf. Sci. 356 110
[53] Sun M, Ren Q, Wang S, Zhang Y, Du Y, Yu J and Tang W 2016 Comp. Mater. Sci. 118 112
[54] Sun M, Ren Q, Zhao Y, Wang S, Yu J and Tang W 2016 J. App. Phys. 119 143904
[55] Sun M, Ren Q, Wang S, Yu J and Tang W 2016 J. Phys. D: Appl. Phys. 49 445305
[56] Tang W, Sun M, Ren Q, Zhang Y, Wang S and Yu J 2016 RSC Adv. 6 95846
[57] Reshak A H, Stys D, Auluck S and Kityk I 2011 Phys. Chem. Chem. Phys. 13 2945
[58] Davydyuk G, Khyzhun O Y, Reshak A H, Kamarudin H, Myronchuk H, Danylchuk S, Fedorchuk A, Piskach L, Mozolyuk M Y and Parasyuk O 2013 Phys. Chem. Chem. Phys. 15 6965
[59] Reshak A H, Kogut Y, Fedorchuk A, Zamuruyeva O, Myronchuk G, Parasyuk O, Kamarudin H, Auluck S, Plucinski K and Bila J 2013 Phys. Chem. Chem. Phys. 15 18979
[60] Reshak A H 2014 Phys. Chem. Chem. Phys. 16 10558
[61] Reshak A H 2014 RSC Adv. 4 39565
[62] Reshak A H 2014 RSC Adv. 4 63137
[63] Blöchl P E 1994 Phys. Rev. B 50 17953
[64] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev, Lett. 77 3865
[65] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[66] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[67] Henkelman G, Arnaldsson A and Jónsson H 2006 Comp. Mater. Sci. 36 354
[68] Janthon P, Kozlov S M, Vines F, Limtrakul J and Illas F 2013 J. Chem Theory Comp. 9 1631
[69] McCreary K, Pi K, Swartz A, Han W, Bao W, Lau C, Guinea F, Katsnelson M and Kawakami R 2010 Phys. Rev. B 81 115453
[70] Chen Y, Wang H, Wang H, Zhao J X, Cai Q H, Wang X G and Ding Y H 2013 Appl. Surf. Sci. 273 293
[71] Alonso-Lanza T, Ayuela A and Granja F A 2016 Phys. Chem. Chem. Phys. 18 21913
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[11] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[12] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[13] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[14] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[15] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
No Suggested Reading articles found!