CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural, electronic, and magnetic behaviors of 5d transition metal atom substituted divacancy graphene: A first-principles study |
Rafique Muhammad1,2, Yong Shuai(帅永)1, He-Ping Tan1, Hassan Muhammad1 |
1 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2 Mehran University of Engineering and Technology, S.Z.A.B, Campus Khairpur Mir's, Sindh, Pakistan |
|
|
Abstract Structural, electronic, and magnetic behaviors of 5d transition metal (TM) atom substituted divacancy (DV) graphene are investigated using first-principles calculations. Different 5d TM atoms (Hf, Ta, W, Re, Os, Ir, and Pt) are embedded in graphene, these impurity atoms replace 2 carbon atoms in the graphene sheet. It is revealed that the charge transfer occurs from 5d TM atoms to the graphene layer. Hf, Ta, and W substituted graphene structures exhibit a finite band gap at high symmetric K-point in their spin up and spin down channels with 0.783 μB, 1.65 μB, and 1.78 μB magnetic moments, respectively. Ir and Pt substituted graphene structures display indirect band gap semiconductor behavior. Interestingly, Os substituted graphene shows direct band gap semiconductor behavior having a band gap of approximately 0.4 eV in their spin up channel with 1.5 μB magnetic moment. Through density of states (DOS) analysis, we can predict that d orbitals of 5d TM atoms could be responsible for introducing ferromagnetism in the graphene layer. We believe that our obtained results provide a new route for potential applications of dilute magnetic semiconductors and half-metals in spintronic devices by employing 5d transition metal atom-doped graphene complexes.
|
Received: 30 December 2016
Revised: 13 February 2017
Accepted manuscript online:
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51522601 and 51421063) and the Program for New Century Excellent Talents in University, China (Grant No. NCET-13-0173). |
Corresponding Authors:
Yong Shuai
E-mail: shuaiyong@hit.edu.cn
|
Cite this article:
Rafique Muhammad, Yong Shuai(帅永), He-Ping Tan, Hassan Muhammad Structural, electronic, and magnetic behaviors of 5d transition metal atom substituted divacancy graphene: A first-principles study 2017 Chin. Phys. B 26 056301
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S V and Geim A K 2005 Proc. Natl. Am. Sci. USA 102 10451
|
[3] |
Guinea F, Peres N, Novoselov K S, Geim A K and Neto A C 2009 Rev. Mod. Phys. 81 109
|
[4] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M, Grigorieva I, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[5] |
Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
|
[6] |
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[7] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[8] |
Bolotin K I, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Solid State Commun. 146 351
|
[9] |
Ohno H 1998 Science 281 951
|
[10] |
Dietl T 2010 Nat. Mater. 9 965
|
[11] |
Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
|
[12] |
Coey J, Venkatesan M and Fitzgerald C 2005 Nat. Mater. 4 173
|
[13] |
Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
|
[14] |
Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Yoshida H K and Dinh V 2010 Rev. Mod. Phys. 82 1633
|
[15] |
Zunger A, Lany S and Raebiger H 2010 Physics 3 53
|
[16] |
Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
|
[17] |
Sarma S D, Adam S, Hwang E and Rossi E 2011 Rev. Mod. Phys. 83 407
|
[18] |
Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[19] |
Banhart F, Kotakoski J and Krasheninnikov A V 2010 ACS nano 5 26
|
[20] |
Kotakoski J, Krasheninnikov A V, Kaiser U and Meyer J 2011 Phys. Rev. Lett. 106 105505
|
[21] |
Han W, Pi K, McCreary K, Li Y, Wong J J, Swartz A and Kawakami R 2010 Phys. Rev. Lett. 105 167202
|
[22] |
Yazyev O V and Katsnelson M 2008 Phys. Rev. Lett. 100 047209
|
[23] |
Tombros N, Jozsa C, Popinciuc M, Jonkman H T and Van Wees B J Nature 448 571
|
[24] |
Sahin H and Peeters F M 2013 Phys. Rev. B 87 085423
|
[25] |
Lisenkov S, Andriotis A N and Menon M 2012 Phys. Rev. Lett. 108 187208
|
[26] |
Lee A T, Kang J, Wei S H, Chang K and Kim Y H 2012 Phys. Rev. B 86 165403
|
[27] |
Sun M, Tang W, Ren Q, Wang S, Du Y and Zhang Y 2015 Appl. Surf. Sci. 356 668
|
[28] |
Krasheninnikov A, Lehtinen P, Foster A S, Pyykkö P and Nieminen R M 2009 Phys. Rev. Lett. 102 126807
|
[29] |
Boukhvalov D and Katsnelson M 2009 Appl. Phys. Lett. 95 023109
|
[30] |
Santos E J, Sánchez-Portal D and Ayuela A 2010 Phys. Rev. B 81 125433
|
[31] |
Nelayev V V and Mironchik A I 2010 Mater. Phys. Mech. 9 26
|
[32] |
Santos E J, Ayuela A and Sánchez-Portal D 2010 New J. Phys. 12 053012
|
[33] |
Lu Y F, Lo S T, Lin J C, Zhang W, Lu J Y, Liu F H, Tseng C M, Lee Y H, Liang C T and Li L J 2013 ACS Nano 7 6522
|
[34] |
Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K and Balicas L 2010 Nat. Mater 9 430
|
[35] |
Zhan D, Sun J, Ni Z H, Liu L, Fan X F, Wang Y, Yu T, Lam Y M, Huang W and Shen Z X 2010 Adv. Funct. Mater. 20 3504
|
[36] |
Farmer D B, Mojarad R G, Perebeinos V, Lin Y M, Tulevski G S, Tsang J C and Avouris P 2008 Nano Lett. 9 388
|
[37] |
Bangert U, Pierce W, Kepaptsoglou D, Ramasse Q, Zan R, Gass M, Van den Berg J, Boothroyd C, Amani J and Hofsass H 2013 Nano Lett. 13 4902
|
[38] |
Rodriíguez-Manzo J A, Cretu O and Banhart F 2010 ACS Nano 4 3422
|
[39] |
Robertson A W, Montanari B, He K, Kim J, Allen C S, Wu Y A, Olivier J, Neethling J, Harrison N and Kirkland A I 2013 Nano Lett. 13 1468
|
[40] |
He Z, He K, Robertson A W, Kirkland A I, Kim D, Ihm J, Yoon E, Lee G D and Warner J H 2014 Nano Lett. 14 3766
|
[41] |
Santos E J, Ayuela A, Fagan S, Mendes Filho j, Azevedo D, Souza Filho A and Sánchez-Portal D 2008 Phys. Rev. B 78 195420
|
[42] |
Kang J, Deng H X, Li S S and Li J 2011 J. Phys.: Condens. Matter 23 346001
|
[43] |
Wu M, Cao C and Jiang J 2010 New J. Phys. 12 063020
|
[44] |
Rafique R, Shuai Y, Tan H P and Muhammad H 2014 Appl. Surf. Sci. 399 20
|
[45] |
Zhang H, Lazo C, Blügel S, Heinze S and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802
|
[46] |
Hu J, Alicea J, Wu R and Franz M 2012 Phys. Rev. Lett. 109 266801
|
[47] |
Beljakov I, Meded V, Symalla F, Fink K, Shallcross S, Ruben M and Wenzel W 2014 Nano Lett. 14 3364
|
[48] |
Zólyomi V, Rusznyák A, Kurti J and Lambert C 2010 J. Phys. Chem. C 114 18548
|
[49] |
Habenicht B F, Teng D, Flecha L S, Shol D S and Xu Y 2014 Top. CataL. 57 69
|
[50] |
Sun M, Wang S, Du Y, Yu J and Tang W 2016 Appl. Surf. Sci. 389 594
|
[51] |
Sun M, Hao Y, Ren Q, Zhao Y, Du Y and Tang W 2016 Solid State Commun. 242 36
|
[52] |
Sun M, Tang W, Ren Q, Wang S K, Yu J and Du Y 2015 Appl. Surf. Sci. 356 110
|
[53] |
Sun M, Ren Q, Wang S, Zhang Y, Du Y, Yu J and Tang W 2016 Comp. Mater. Sci. 118 112
|
[54] |
Sun M, Ren Q, Zhao Y, Wang S, Yu J and Tang W 2016 J. App. Phys. 119 143904
|
[55] |
Sun M, Ren Q, Wang S, Yu J and Tang W 2016 J. Phys. D: Appl. Phys. 49 445305
|
[56] |
Tang W, Sun M, Ren Q, Zhang Y, Wang S and Yu J 2016 RSC Adv. 6 95846
|
[57] |
Reshak A H, Stys D, Auluck S and Kityk I 2011 Phys. Chem. Chem. Phys. 13 2945
|
[58] |
Davydyuk G, Khyzhun O Y, Reshak A H, Kamarudin H, Myronchuk H, Danylchuk S, Fedorchuk A, Piskach L, Mozolyuk M Y and Parasyuk O 2013 Phys. Chem. Chem. Phys. 15 6965
|
[59] |
Reshak A H, Kogut Y, Fedorchuk A, Zamuruyeva O, Myronchuk G, Parasyuk O, Kamarudin H, Auluck S, Plucinski K and Bila J 2013 Phys. Chem. Chem. Phys. 15 18979
|
[60] |
Reshak A H 2014 Phys. Chem. Chem. Phys. 16 10558
|
[61] |
Reshak A H 2014 RSC Adv. 4 39565
|
[62] |
Reshak A H 2014 RSC Adv. 4 63137
|
[63] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[64] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev, Lett. 77 3865
|
[65] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[66] |
Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
|
[67] |
Henkelman G, Arnaldsson A and Jónsson H 2006 Comp. Mater. Sci. 36 354
|
[68] |
Janthon P, Kozlov S M, Vines F, Limtrakul J and Illas F 2013 J. Chem Theory Comp. 9 1631
|
[69] |
McCreary K, Pi K, Swartz A, Han W, Bao W, Lau C, Guinea F, Katsnelson M and Kawakami R 2010 Phys. Rev. B 81 115453
|
[70] |
Chen Y, Wang H, Wang H, Zhao J X, Cai Q H, Wang X G and Ding Y H 2013 Appl. Surf. Sci. 273 293
|
[71] |
Alonso-Lanza T, Ayuela A and Granja F A 2016 Phys. Chem. Chem. Phys. 18 21913
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|