INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model |
Xin-Miao Zhu(朱鑫淼)1, Min Cui(崔敏)1,†, Yu Wang(汪宇)2, Tian-Jing Yu(于添景)1, Jin-Xiang Deng(邓金祥)1, and Hong-Li Gao(高红丽)1 |
1 Faculty of Science, Beijing University of Technology, Beijing 100124, China; 2 Department of Physics, Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China |
|
|
Abstract Based on the transport equation of the semiconductor device model for 0.524 eV GeSn alloy and the experimental parameters of the material, the thermal-electricity conversion performance governed by a GeSn diode has been systematically studied in its normal and inverted structures. For the normal p+/n (n+/p) structure, it is demonstrated here that an optimal base doping Nd(a) = 3 (7)×1018 cm-3 is observed, and the superior p+/n structure can achieve a higher performance. To reduce material consumption, an economical active layer can comprise a 100 nm-300 nm emitter and a 3 μm-6 μm base to attain comparable performance to that for the optimal configuration. Our results offer many useful guidelines for the fabrication of economical GeSn thermophotovoltaic devices.
|
Received: 23 July 2021
Revised: 15 November 2021
Accepted manuscript online:
|
PACS:
|
88.40.fc
|
(Modeling and analysis)
|
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
02.60.-x
|
(Numerical approximation and analysis)
|
|
78.40.Fy
|
(Semiconductors)
|
|
Fund: Project supported by the Beijing Natural Science Foundation Program,China (Grant No.4192016). |
Corresponding Authors:
Min Cui,E-mail:mcui@bjut.edu.cn
E-mail: mcui@bjut.edu.cn
|
About author: 2021-12-31 |
Cite this article:
Xin-Miao Zhu(朱鑫淼), Min Cui(崔敏), Yu Wang(汪宇), Tian-Jing Yu(于添景),Jin-Xiang Deng(邓金祥), and Hong-Li Gao(高红丽) GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model 2022 Chin. Phys. B 31 058801
|
[1] Cakiroglu D, Perez J P, Evirgen A, Lucchesi C, Chapuis P O, Taliercio T, Tournié E and Vaillon R 2019 Sol. Energy Mater. Sol. Cells 203 110190 [2] Omair Z, Scranton G, Pazos-Outón L M, Xiao T P, Steiner M A, Ganapati V, Peterson P F, Holzrichter J, Atwater H and Yablonovitch E 2019 Proc. Natl. Acad. Sci. USA 116 15356 [3] Zhou Z, Jiang C, Huang H, Liang L and Zhu G 2020 Energy 210 118503 [4] Liang T, Fu T, Hu C, Chen X, Su S and Chen J 2021 Renew. Energy 173 942 [5] Fekadu M, Namkyu L, Geehong C, Taehwan K and Hyung C 2018 Energies 11 2299 [6] Xu W, Liu Y, Tang L, Zhang Y and Xu C 2021 Infrared Physics & Technology 115 103719 [7] Coutts T J 1999 Renew. Sust. Energy Rev. 3 77 [8] Conley B R, Mosleh A, Ghetmiri S A, Naseem H A, Tolle J and Yu S Q 2013 Conference Record of the IEEE Photovoltaic Specialists Conference pp. 1346-1349 [9] Harwit A, Pukite P R, Angilello J and Iyer S S 1990 Thin Solid Films 184 395 [10] Kaiser W and Thurmond C D 1961 J. Appl. Phys. 32 115 [11] Lu Z H Y H, Wang Y S, Li C, Lin G Y, Chen S Y, Huang W and Wang J Y 2017 Chin. Phys. B 26 116802 [12] Schwarz D, Funk H S, Oehme M and Schulze J 2020 J. Electron. Mater. 49 5154 [13] Galluccio E, Mirabelli G, Harvey A, Conroy M, Napolitani E and Duffy R 2021 Materials Science in Semiconductor Processing 121 105399 [14] Zhao N W, Kai Yu, Zhang X M, Li X L, Zheng J, Xue C L, Cheng B W and Li C B 2019 Chin. Phys. B 28 128501 [15] Ghosh S, Lin K C, Tsai C H, Kumar H, Chen Q, Zhang L, Son B, Tan C S, Kim M, Mukhopadhyay B and Chang G E 2020 Micromachines 11 795 [16] Conley B R, Naseem H, Sun G, Sharps P and Yu S Q 2012 Photovoltaic Specialists Conference IEEE 001189-001192 [17] Kondratenko S V, Hyrka Y V, Mazur Y I, Kuchuk A V, Dou W, Tran H, Margetis J, Tolle J, Yu S Q and Salamo G J 2019 Acta Mater. 171 40 [18] Pham T, Du W, Tran H, Margetis J, Tolle J, Sun G, Soref R A, Naseem H A, Li B and Yu S Q 2016 Opt. Express 24 4519 [19] Sze S M and Mattis D C 1970 Phys. Today 23 75 [20] Basu P K 1997 Theory of Optical Processes in Semiconductors - Bulk and Microstructures [21] Caughey D M and Thomas R E 1967 Proc. IEEE 55 2192 [22] Paul J, Mondal C and Biswas A 2019 Materials Science in Semiconductor Processing 94 128 [23] Auston D H, Shank C V and Lefur P 1975 Phys. Rev. Lett. 35 1022 [24] Sermage B, Eichler H J, Heritage J P, Nelson R J and Dutta N K 1983 Appl. Phys. Lett. 42 259 [25] Gaubas E, Bauža M, Uleckas A and Vanhellemont J 2006 Materials Science in Semiconductor Processing 9 781 [26] Jacoboni C, Nava F, Canali C and Ottaviani G 1981 Phys. Rev. B 24 1014 [27] Liu Z, Wen J, Zhang X, Li C, Xue C, Zuo Y, Cheng B and Wang Q 2014 J. Phys. D: Appl. Phys. 48 445103 [28] Liu L, Liang R, Wang J and Xu J 2015 Appl. Phys. Express 3 031301 [29] Chadi D J 1977 Phys. Rev. B 16 790 [30] Virgilio M, Manganelli C L, Grosso G, Schroeder T and Capellini G 2013 J. Appl. Phys. 114 243102 [31] Wang Y and Lou Y Y 2015 Renew. Energy 75 8 [32] Wang Y, Zhang X, Zhang X and Chen N 2012 Renew. Energy 48 231 [33] Green M A 1982 Sol. Energy 1 5 [34] Donetsky D, Belenky G, Svensson S and Suchalkin S 2010 Appl. Phys. Lett. 97 052108 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|