INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High performance photodetectors based on high quality InP nanowires |
Yan-Kun Yang(杨燕琨), Tie-Feng Yang(杨铁锋), Hong-Lai Li(李洪来), Zhao-Yang Qi(祁朝阳), Xin-Liang Chen(陈新亮), Wen-Qiang Wu(吴文强), Xue-Lu Hu(胡学鹿), Peng-Bin He(贺鹏斌), Ying Jiang(蒋英), Wei Hu(胡伟), Qing-Lin Zhang(张清林), Xiu-Juan Zhuang(庄秀娟), Xiao-Li Zhu(朱小莉), An-Lian Pan(潘安练) |
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Physics and Electronics Science, Hunan University, Changsha 410082, China |
|
|
Abstract In this paper, small diameter InP nanowires with high crystal quality were synthesized through a chemical vapor deposition method. Benefitting from the high crystallinity and large specific surface area of InP nanowires, the simply constructed photodetector demonstrates a high responsivity of up to 1170 A·W-1 and an external quantum efficiency of 2.8×105% with a fast rise time of 110 ms and a fall time of 130 ms, even at low bias of 0.1 V. The effect of back-gate voltage on photoresponse of the device was systematically investigated, confirming that the photocurrent dominates over thermionic and tunneling currents in the whole operation. A mechanism based on energy band theory at the junction between metal and semiconductor was proposed to explain the back-gate voltage dependent performance of the photodetectors. These convincing results indicate that fine InP nanowires will have a brilliant future in smart optoelectronics.
|
Received: 11 August 2016
Revised: 10 September 2016
Accepted manuscript online:
|
PACS:
|
81.07.Gf
|
(Nanowires)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51525202, 61574054, 61505051, and 61474040), the Science and Technology Plan of Hunan Province, China (Grant Nos. 2014FJ2001 and 2014TT1004), and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China. |
Corresponding Authors:
Xiao-Li Zhu, An-Lian Pan
E-mail: zhuxiaoli@hnu.edu.cn;anlian.pan@hnu.edu.cn
|
Cite this article:
Yan-Kun Yang(杨燕琨), Tie-Feng Yang(杨铁锋), Hong-Lai Li(李洪来), Zhao-Yang Qi(祁朝阳), Xin-Liang Chen(陈新亮), Wen-Qiang Wu(吴文强), Xue-Lu Hu(胡学鹿), Peng-Bin He(贺鹏斌), Ying Jiang(蒋英), Wei Hu(胡伟), Qing-Lin Zhang(张清林), Xiu-Juan Zhuang(庄秀娟), Xiao-Li Zhu(朱小莉), An-Lian Pan(潘安练) High performance photodetectors based on high quality InP nanowires 2016 Chin. Phys. B 25 118106
|
[1] |
Xu X X and Wang X 2009 Inorg. Chem. 48 3890
|
[2] |
Zhao X, Wei C M, Yang L and Chou M Y 2004 Phys. Rev. Lett. 92 236805
|
[3] |
Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Natrue 451 163
|
[4] |
Ren P Y, Zhu X L, Han J Y, Xu J Y, Ma L, Li H L, Zhuang X J, Zhou H, Zhang Q L, Xia M G and Pan A L 2014 Nano-Micro Lett. 6 301
|
[5] |
Liu R B, Zhuang X J, Xu J Y, Li D B, Zhang Q L, Ding K, He P B, Ning C Z, Zou B S and Pan A L 2011 Appl. Phys. Lett. 99 263101
|
[6] |
Cademartiri L and Ozin G A 2009 Adv. Mater. 21 1013
|
[7] |
Wang D F, Liang J R, Li C Q, Yan W J and Hu M 2016 Chin. Phys. B 25 028102
|
[8] |
Guo S, Li Z H, Song G L, Zou B S, Wang X X and Liu R B 2015 J. Alloys Compd. 649 793
|
[9] |
Hu L F, Yan J, Liao M Y, Wu L M and Fang X S 2011 Small 7 1012
|
[10] |
Shen G Z, Liang B, Wang X F, Huang H T, Chen D and Wang Z L 2011 ACS Nano 5 6148
|
[11] |
Yang Z X, Han N, Fang M, Lin H, Cheung H Y, Yip S P, Wang E J, Hung T F, Wong C Y and Ho J C 2014 Nat. Commun. 5 5249
|
[12] |
Duan X F and Lieber C M 2000 Adv. Mater. 12 298
|
[13] |
Joyce H J, Wong-Leung J, Yong C K, Docherty C J, Paiman S, Gao Q, Tan H H, Jagadish C, Lloyd-Hughes J, Herz L M and Johnston M B 2012 Nano Lett. 12 5325
|
[14] |
Duan X F, Huang Y, Cui Y, Wang J F and Lieber C M 2001 Nature 409 66
|
[15] |
Wang J F, Gudiksen M S, Duan X F, Cui Y and Lieber C M 2001 Science 293 1455
|
[16] |
Wallentin J, Anttu N, Asoli D, Huffman M, Aberg I, Magnusson M H, Siefer G, Fuss-Kailuweit P, Dimroth F, Witzigmann B, Xu H Q, Samuelson L, Deppert K and Borgström M T 2013 Science 339 1057
|
[17] |
Chen G, Liang B, Liu Z, Yu G, Xie X M, Luo T, Xie Z, Chen D, Zhu M Q and Shen G Z 2014 J. Mater. Chem. C 2 1270
|
[18] |
Sarkar A, Logeeswaran V J, Kobayashi N P, Straznicky J, Wang S Y, Williams R S and Islam M S 2007 Proc. SPIE 6768 67680P
|
[19] |
Logeeswaran V J, Oh J, Nayak A P, Katzenmeyer A M, Gilchrist K H, Grego S, Kobayashi N P, Wang S Y, Talin A A, Dhar N K and Islam M S 2011 IEEE J. Sel. Top. Quant. 17 1002
|
[20] |
Duan T Y, Liao C N, Chen T, Yu N, Liu Y, Yin H, Xiong Z J and Zhu M Q 2015 Nano Energy 15 293
|
[21] |
Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
|
[22] |
Xing Y J, Yu D P, Xi Z H and Xue Z Q 2002 Chin. Phys. B 11 1047
|
[23] |
Liu C, Dai L, You L P, Xu W J and Qin G G 2008 Nanotechnology 19 465203
|
[24] |
Shen G Z, Bando Y, Liu B D, Tang C C and Golberg D 2006 J. Phys. Chem. B 110 20129
|
[25] |
Gudiksen M S, Wang J F and Lieber C M 2002 J. Phys. Chem. B 106 4036
|
[26] |
Ren P Y, Xu J Y, Wang Y C, Zhuang X J, Zhang Q L, Zhou H, Wan Q, Shan Z P, Zhu X L and Pan A L 2013 Phys. Status Solidi A 210 1898
|
[27] |
Hui A T, Wang F, Han N, Yip S, Xiu F, Hou J J, Yen Y T, Hung T, Chueh Y L and Ho J C 2012 J. Mater. Chem. 22 10704
|
[28] |
Miao J S, Hu W D, Guo N, Lu Z Y, Zou X M, Liao L, Shi S X, Chen P P, Fan Z Y, Ho J C, Li T X, Chen X S and Lu W 2014 ACS Nano 8 3628
|
[29] |
Ren P Y, Hu W, Zhang Q L, Zhu X L, Zhuang X J, Ma L, Fan X P, Zhou H, Liao L, Duan X F and Pan A L 2014 Adv. Mater. 26 7444
|
[30] |
Ma L, Hu W, Zhang Q L, Ren P Y, Zhuang X J, Zhou H, Xu J Y, Li H L, Shan Z P, Wang X X, Liao L, Xu H Q and Pan A L 2014 Nano Lett. 14 694
|
[31] |
Zheng D S, Wang J L, Hu W, Liao L, Fang H H, Guo N, Wang P, Gong Fan, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S and Lu W 2016 Nano Lett. 16 2548
|
[32] |
Ma L, Zhang X H, Li H L, Tan H, Yang Y K, Xu Y D, Hu W, Zhu X L, Zhuang X J and Pan A L 2015 Semicond. Sci. Tech. 30 105033
|
[33] |
Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L and Pan A L 2015 Nano-Micro Lett. 8 29
|
[34] |
Zhou X, Zhang Q, Gan L, Li X, Li H Q, Zhang Y, Golberg D and Zhai T Y 2016 Adv. Funct. Mater. 26 704
|
[35] |
Li L, Lee P S, Yan C Y, Zhai T Y, Fang X S, Liao M Y, Koide Y, Bando Y and Golberg D 2010 Adv. Mater. 22 5145
|
[36] |
Li L, Wu P C, Fang X S, Zhai T, Dai L, Liao M Y, Koide Y, Wang H Q, Bando Y and Golberg D 2010 Adv. Mater. 22 3161
|
[37] |
Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano 6 74
|
[38] |
Tamalampudi S R, Lu Y Y, Kumar U R, Sankar R, Liao C D, Moorthy B K, Cheng C H, Chou F C and Chen Y T 2014 Nano Lett. 14 2800
|
[39] |
Léonard F O and Tersoff J 2009 Phys. Rev. Lett. 83 5174
|
[40] |
Xu K, Wang Z X, Wang F, Huang Y, Wang F M, Yin L, Jiang C and He J 2015 Adv. Mater. 27 7881
|
[41] |
Zhang W J, Chiu M H, Chen C H, Chen W, Li L J and Wee A T 2014 ACS Nano 8 8653
|
[42] |
Zhou X, Zhang Q, Gan L, Li H Q and Zhai T Y 2016 Adv. Funct. Mater. 26 4405
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|