Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118106    DOI: 10.1088/1674-1056/25/11/118106
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High performance photodetectors based on high quality InP nanowires

Yan-Kun Yang(杨燕琨), Tie-Feng Yang(杨铁锋), Hong-Lai Li(李洪来), Zhao-Yang Qi(祁朝阳), Xin-Liang Chen(陈新亮), Wen-Qiang Wu(吴文强), Xue-Lu Hu(胡学鹿), Peng-Bin He(贺鹏斌), Ying Jiang(蒋英), Wei Hu(胡伟), Qing-Lin Zhang(张清林), Xiu-Juan Zhuang(庄秀娟), Xiao-Li Zhu(朱小莉), An-Lian Pan(潘安练)
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Physics and Electronics Science, Hunan University, Changsha 410082, China
Abstract  

In this paper, small diameter InP nanowires with high crystal quality were synthesized through a chemical vapor deposition method. Benefitting from the high crystallinity and large specific surface area of InP nanowires, the simply constructed photodetector demonstrates a high responsivity of up to 1170 A·W-1 and an external quantum efficiency of 2.8×105% with a fast rise time of 110 ms and a fall time of 130 ms, even at low bias of 0.1 V. The effect of back-gate voltage on photoresponse of the device was systematically investigated, confirming that the photocurrent dominates over thermionic and tunneling currents in the whole operation. A mechanism based on energy band theory at the junction between metal and semiconductor was proposed to explain the back-gate voltage dependent performance of the photodetectors. These convincing results indicate that fine InP nanowires will have a brilliant future in smart optoelectronics.

Keywords:  InP nanowires      small diameter      photodetector      back-gate voltage  
Received:  11 August 2016      Revised:  10 September 2016      Accepted manuscript online: 
PACS:  81.07.Gf (Nanowires)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51525202, 61574054, 61505051, and 61474040), the Science and Technology Plan of Hunan Province, China (Grant Nos. 2014FJ2001 and 2014TT1004), and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China.

Corresponding Authors:  Xiao-Li Zhu, An-Lian Pan     E-mail:  zhuxiaoli@hnu.edu.cn;anlian.pan@hnu.edu.cn

Cite this article: 

Yan-Kun Yang(杨燕琨), Tie-Feng Yang(杨铁锋), Hong-Lai Li(李洪来), Zhao-Yang Qi(祁朝阳), Xin-Liang Chen(陈新亮), Wen-Qiang Wu(吴文强), Xue-Lu Hu(胡学鹿), Peng-Bin He(贺鹏斌), Ying Jiang(蒋英), Wei Hu(胡伟), Qing-Lin Zhang(张清林), Xiu-Juan Zhuang(庄秀娟), Xiao-Li Zhu(朱小莉), An-Lian Pan(潘安练) High performance photodetectors based on high quality InP nanowires 2016 Chin. Phys. B 25 118106

[1] Xu X X and Wang X 2009 Inorg. Chem. 48 3890
[2] Zhao X, Wei C M, Yang L and Chou M Y 2004 Phys. Rev. Lett. 92 236805
[3] Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Natrue 451 163
[4] Ren P Y, Zhu X L, Han J Y, Xu J Y, Ma L, Li H L, Zhuang X J, Zhou H, Zhang Q L, Xia M G and Pan A L 2014 Nano-Micro Lett. 6 301
[5] Liu R B, Zhuang X J, Xu J Y, Li D B, Zhang Q L, Ding K, He P B, Ning C Z, Zou B S and Pan A L 2011 Appl. Phys. Lett. 99 263101
[6] Cademartiri L and Ozin G A 2009 Adv. Mater. 21 1013
[7] Wang D F, Liang J R, Li C Q, Yan W J and Hu M 2016 Chin. Phys. B 25 028102
[8] Guo S, Li Z H, Song G L, Zou B S, Wang X X and Liu R B 2015 J. Alloys Compd. 649 793
[9] Hu L F, Yan J, Liao M Y, Wu L M and Fang X S 2011 Small 7 1012
[10] Shen G Z, Liang B, Wang X F, Huang H T, Chen D and Wang Z L 2011 ACS Nano 5 6148
[11] Yang Z X, Han N, Fang M, Lin H, Cheung H Y, Yip S P, Wang E J, Hung T F, Wong C Y and Ho J C 2014 Nat. Commun. 5 5249
[12] Duan X F and Lieber C M 2000 Adv. Mater. 12 298
[13] Joyce H J, Wong-Leung J, Yong C K, Docherty C J, Paiman S, Gao Q, Tan H H, Jagadish C, Lloyd-Hughes J, Herz L M and Johnston M B 2012 Nano Lett. 12 5325
[14] Duan X F, Huang Y, Cui Y, Wang J F and Lieber C M 2001 Nature 409 66
[15] Wang J F, Gudiksen M S, Duan X F, Cui Y and Lieber C M 2001 Science 293 1455
[16] Wallentin J, Anttu N, Asoli D, Huffman M, Aberg I, Magnusson M H, Siefer G, Fuss-Kailuweit P, Dimroth F, Witzigmann B, Xu H Q, Samuelson L, Deppert K and Borgström M T 2013 Science 339 1057
[17] Chen G, Liang B, Liu Z, Yu G, Xie X M, Luo T, Xie Z, Chen D, Zhu M Q and Shen G Z 2014 J. Mater. Chem. C 2 1270
[18] Sarkar A, Logeeswaran V J, Kobayashi N P, Straznicky J, Wang S Y, Williams R S and Islam M S 2007 Proc. SPIE 6768 67680P
[19] Logeeswaran V J, Oh J, Nayak A P, Katzenmeyer A M, Gilchrist K H, Grego S, Kobayashi N P, Wang S Y, Talin A A, Dhar N K and Islam M S 2011 IEEE J. Sel. Top. Quant. 17 1002
[20] Duan T Y, Liao C N, Chen T, Yu N, Liu Y, Yin H, Xiong Z J and Zhu M Q 2015 Nano Energy 15 293
[21] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
[22] Xing Y J, Yu D P, Xi Z H and Xue Z Q 2002 Chin. Phys. B 11 1047
[23] Liu C, Dai L, You L P, Xu W J and Qin G G 2008 Nanotechnology 19 465203
[24] Shen G Z, Bando Y, Liu B D, Tang C C and Golberg D 2006 J. Phys. Chem. B 110 20129
[25] Gudiksen M S, Wang J F and Lieber C M 2002 J. Phys. Chem. B 106 4036
[26] Ren P Y, Xu J Y, Wang Y C, Zhuang X J, Zhang Q L, Zhou H, Wan Q, Shan Z P, Zhu X L and Pan A L 2013 Phys. Status Solidi A 210 1898
[27] Hui A T, Wang F, Han N, Yip S, Xiu F, Hou J J, Yen Y T, Hung T, Chueh Y L and Ho J C 2012 J. Mater. Chem. 22 10704
[28] Miao J S, Hu W D, Guo N, Lu Z Y, Zou X M, Liao L, Shi S X, Chen P P, Fan Z Y, Ho J C, Li T X, Chen X S and Lu W 2014 ACS Nano 8 3628
[29] Ren P Y, Hu W, Zhang Q L, Zhu X L, Zhuang X J, Ma L, Fan X P, Zhou H, Liao L, Duan X F and Pan A L 2014 Adv. Mater. 26 7444
[30] Ma L, Hu W, Zhang Q L, Ren P Y, Zhuang X J, Zhou H, Xu J Y, Li H L, Shan Z P, Wang X X, Liao L, Xu H Q and Pan A L 2014 Nano Lett. 14 694
[31] Zheng D S, Wang J L, Hu W, Liao L, Fang H H, Guo N, Wang P, Gong Fan, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S and Lu W 2016 Nano Lett. 16 2548
[32] Ma L, Zhang X H, Li H L, Tan H, Yang Y K, Xu Y D, Hu W, Zhu X L, Zhuang X J and Pan A L 2015 Semicond. Sci. Tech. 30 105033
[33] Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L and Pan A L 2015 Nano-Micro Lett. 8 29
[34] Zhou X, Zhang Q, Gan L, Li X, Li H Q, Zhang Y, Golberg D and Zhai T Y 2016 Adv. Funct. Mater. 26 704
[35] Li L, Lee P S, Yan C Y, Zhai T Y, Fang X S, Liao M Y, Koide Y, Bando Y and Golberg D 2010 Adv. Mater. 22 5145
[36] Li L, Wu P C, Fang X S, Zhai T, Dai L, Liao M Y, Koide Y, Wang H Q, Bando Y and Golberg D 2010 Adv. Mater. 22 3161
[37] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano 6 74
[38] Tamalampudi S R, Lu Y Y, Kumar U R, Sankar R, Liao C D, Moorthy B K, Cheng C H, Chou F C and Chen Y T 2014 Nano Lett. 14 2800
[39] Léonard F O and Tersoff J 2009 Phys. Rev. Lett. 83 5174
[40] Xu K, Wang Z X, Wang F, Huang Y, Wang F M, Yin L, Jiang C and He J 2015 Adv. Mater. 27 7881
[41] Zhang W J, Chiu M H, Chen C H, Chen W, Li L J and Wee A T 2014 ACS Nano 8 8653
[42] Zhou X, Zhang Q, Gan L, Li H Q and Zhai T Y 2016 Adv. Funct. Mater. 26 4405
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[5] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[6] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[7] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[8] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[9] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[10] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[11] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[12] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[13] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[14] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[15] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
No Suggested Reading articles found!