Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067305    DOI: 10.1088/1674-1056/25/6/067305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure

Qing Zhu(朱青)1,2, Xiao-Hua Ma(马晓华)1,2, Wei-Wei Chen(陈伟伟)1,2, Bin Hou(侯斌)1,2, Jie-Jie Zhu(祝杰杰)1,2, Meng Zhang(张濛)1,2, Li-Xiang Chen(陈丽香)1,2, Yan-Rong Cao(曹艳荣)3, Yue Hao(郝跃)2
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China;
2 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China;
3 School of Mechano-electric Engineering, Xidian University, Xi’an 710071, China
Abstract  

Deep level transient spectroscopy (DLTS) as a method to investigate deep traps in AlGaN/GaN heterostructure or high electron mobility transistors (HEMTs) has been widely utilized. The DLTS measurements under different bias conditions are carried out in this paper. Two hole-like traps with active energies of Ev+0.47 eV, and Ev+0.10 eV are observed, which are related to surface states. The electron traps with active energies of Ec-0.56 eV are located in the channel, those with Ec-0.33 eV and Ec-0.88 eV are located in the AlGaN layer. The presence of surface states has a strong influence on the detection of electron traps, especially when the electron traps are low in density. The DLTS signal peak height of the electron trap is reduced and even disappears due to the presence of plentiful surface state.

Keywords:  AlGaN/GaN      hole-like traps      DLTS      surface states  
Received:  09 November 2015      Revised:  22 February 2016      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant No. 2011CBA00606), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0915), and the National Natural Science Foundation of China (Grant Nos. 61334002 and 61404097).

Corresponding Authors:  Xiao-Hua Ma     E-mail:  xhma@xidian.edu.cn

Cite this article: 

Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Yan-Rong Cao(曹艳荣), Yue Hao(郝跃) Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure 2016 Chin. Phys. B 25 067305

[1] Hacke P, Detchprohm T, Hiramatsu K, Sawaki N, Tadatomo K and Miyake K 1994 J. Appl. Phys. 76 304
[2] Park Y S, Lee M, Jeon K, Yoon I T, Shon Y, Im H, Park C J, Cho H Y and Han M S 2010 Appl. Phys. Lett. 97 112110
[3] Fang Z Q, Look D C, Kim W, Fan Z, Botchkarev A and Morkoç H 1998 Appl. Phys. Lett. 72 2277
[4] Chen S, Honda U, Shibata T, Matsumura T, Tokuda Y, Ishikawa K, Hori M, Ueda H, Uesugi T and Kachi T 2012 J. Appl. Phys. 112 053513
[5] Cho H K, Kim C S and Hong C H 2003 J. Appl. Phys. 94 1485
[6] Asghar M, Muret P, Beaumont B and Gibart P 2004 Mater. Sci. Eng. B 113 248
[7] Fang Z Q, Polenta L, Hemsky J W and Look D C 2000 11$th International Semiconducting and Insulating Materials Conference, July 3-7, 2000, Canberra, Australia, p. 35
[8] Tanaka T, Shiojima K, Otoki Y and Tokuda Y 2014 Thin Solid Films 557 207
[9] Meneghini M, Rossetto I, Bisi D, Stocco A, Chini A, Pantellini A, Lanzieri C, Nanni A, Meneghesso G and Zanoni E 2014 IEEE Trans. Electron Dev. 61 4070
[10] Sasikumar A, Arehart A and Ringel S A 2012 IEEE International Reliability Physics Symposium, April 15-19, 2012, Anaheim, California, USA, 2C.3.1
[11] Duc T T, Pozina G, Son N T, Ohshima T, Janzen E and Hemmingsson C 2015 Phys. Status Solidi B 1-6
[12] Zhang Z, Farzana E, Sun W Y, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, McSkimming B, Kyle E C, Speck J S, Arehart A R and Ringel S A 2015 J. Appl. Phys. 118 155701
[13] Bisi D, Meneghini M, Santi C, Chini A, Dammann M, Brückner P, Mikulla M, Meneghesso G and Zanon E 2013 IEEE Trans. Electron Dev. 60 3166
[14] Look D C and Fang Z Q 2001 Appl. Phys. Lett. 79 84
[15] Okino T, Ochiai M, Ohno Y, Kishimoto S, Maezawa K and Mizutani T 2004 IEEE Electron Dev. Lett. 25 523
[16] Sasikumar A, Cardwell D W, Arehart A R, Lu J, Kaun S W, Keller S, Mishra U K, Speck J S, Pelz J P and Ringel S A 2014 IEEE International Reliability Physics Symposium, June 1-5, 2014, Waikoloa, USA, P. 2C.1.1
[17] Choi K J and Lee J L 2001 J. Vac. Sci. Technol. B 19 615
[18] Zhao J H 1990 IEEE Trans. Electron Dev. 37 1235
[19] Blight S R, Wallis R H and Thomas H 1986 IEEE Trans. Electron Dev. ED-33 1447
[20] Chen W W, Ma X H, Hou B, Zhu J J, Chen Y H, Zheng X F, Zhang J C and Hao Y 2014 Appl. Phys. Lett. 105 173507
[21] Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 560
[22] Onojima N, Higashiwaki M, Suda J, Kimoto T, Mimura T and Matsui T 2007 J. Appl. Phys. 101 043703
[23] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250
[24] Smorchkova I P, Elsass C R, Ibbetson J P, Vetury R, Heying B, Fini P, Haus E, DenBaars S P, Speck J S and Mishra U K 1999 J. Appl. Phys. 86 4520
[25] Wells A M, Uren M J, Balmer R S, Hilton K P, Martin T and Missous M 2005 Solid-State Electron. 49 279
[26] Polyakov A Y, Smirnov N B, Govorkov A V and Redwing J M 1998 Solid-State Electron. 42 831
[27] Park Y S, Park C J, Park C M, Na J H, Oh J S, Yoon I T, Cho H Y, Kang T W and Oh J E 2005 Appl. Phys. Lett. 86 152109
[28] Shi L Y, Shen B, Yan J C, Wang J X and Wang P 2014 Chin. Phys. B 23 116102
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[5] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[6] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[7] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[8] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[9] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[10] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[11] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[12] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[13] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[14] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[15] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
No Suggested Reading articles found!