Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067102    DOI: 10.1088/1674-1056/25/6/067102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Numerical simulation study of organic nonvolatile memory with polysilicon floating gate

Zhao-wen Yan(闫兆文), Jiao Wang(王娇), Jian-li Qiao(乔坚栗), Wen-jie Chen(谌文杰), Pan Yang(杨盼), Tong Xiao(肖彤), Jian-hong Yang(杨建红)
Institute of Microelectronics, Lanzhou University, Lanzhou 730000, China
Abstract  

A polysilicon-based organic nonvolatile floating-gate memory device with a bottom-gate top-contact configuration is investigated,in which polysilicon is sandwiched between oxide layers as a floating gate. Simulations for the electrical characteristics of the polysilicon floating gate-based memory device are performed. The shifted transfer characteristics and corresponding charge trapping mechanisms during programing and erasing (P/E) operations at various P/E voltages are discussed. The simulated results show that present memory exhibits a large memory window of 57.5 V, and a high read current on/off ratio of ≈ 103. Compared with the reported experimental results, these simulated results indicate that the polysilicon floating gate based memory device demonstrates remarkable memory effects, which shows great promise in device designing and practical application.

Keywords:  organic floating gate memory      polysilicon floating gate      programing and erasing operations      device simulation  
Received:  26 November 2015      Revised:  31 January 2016      Accepted manuscript online: 
PACS:  71.15.-m (Methods of electronic structure calculations)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.50.-h (Electronic transport phenomena in thin films)  
  74.20.Pq (Electronic structure calculations)  
Corresponding Authors:  Jian-hong Yang     E-mail:  yangjh@lzu.edu.cn

Cite this article: 

Zhao-wen Yan(闫兆文), Jiao Wang(王娇), Jian-li Qiao(乔坚栗), Wen-jie Chen(谌文杰), Pan Yang(杨盼), Tong Xiao(肖彤), Jian-hong Yang(杨建红) Numerical simulation study of organic nonvolatile memory with polysilicon floating gate 2016 Chin. Phys. B 25 067102

[1] Leong W L, Mathews N, Tan B, Vaidyanathan S, Dötz F and Mhaisalkar S 2011 J. Mater. Chem. 21 5203
[2] Kang M, Kim Y A, Yun J M, Khim D, Kim J, Noh Y Y, Baeg K J and Kim D Y 2014 Nanoscale 6 12315
[3] Gao X, Liu C H, She X J, Li Q L, Liu J and Wang S D 2014 Org. Electron. 15 2486
[4] Cho I, Kim B J, Ryu S W, Cho J H and Cho J 2014 Nanotechnology 25 505604
[5] Dai M K, Lin T Y, Yang M H, Lee C K, Huang C C and Chen Y F 2014 J. Mater. Chem. C 2 5342
[6] Kaltenbrunner M, Stadler P, Schwödiauer R, Hassel A W, Sariciftci N S and Bauer S 2011 Adv. Mater. 23 4892
[7] Gao X, She X J, Liu C H, Sun Q J, Liu J and Wang S D 2013 Appl. Phys. Lett. 102 023303
[8] Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T and Someya T 2009 Science 326 1516
[9] Shang L, Ji Z, Wang H, Chen Y, Liu X, Han M and Liu M 2011 IEEE Electron Dev. Lett. 32 1451
[10] Kang M, Baeg K J, Khim D, Noh Y Y and Kim D Y 2013 Adv. Funct. Mater. 23 3503
[11] Haik M Y, Ayesh A I, Abdulrehman T and Haik Y 2014 Mater. Lett. 124 67
[12] Han S T, Zhou Y, Xu Z X, Roy V A L and Hung T F 2011 J. Mater. Chem. 21 14575
[13] Wang H, Ji Z, Shang L, Chen Y, Han M, Liu X, Peng Y Q and Liu M 2011 Org. Electron. 12 1236
[14] Yi M D, Xie M, Shao Y Q, Li W, Ling H F, Xie L H, Yang T, Fan Q L, Zhua J L and Huang W 2015 J. Mater. Chem. C 3 5220
[15] Tseng C W, Huang D C and Tao Y T 2015 ACS Appl. Mater. Interfaces 7 9767
[16] Kim Y N, Lee N H, Yun D Y and Kim T W 2015 Org. Electron. 25 165
[17] Jung J H, Kim S, Kim H, Park J and Oh J H 2015 Small 11 4976
[18] Lee K H, Tsai J R, Chang R D, Lin H C and Huang T Y 2013 Appl. Phys. Lett. 103 153102
[19] Gundlach D J, Lin Y Y, Jackson T N, Nelson S F and Schlom D G 1997 IEEE Electron Dev. Lett. 18 87
[20] Jurchescu O D, Baas J and Palstra T T M 2004 Appl. Phys. Lett. 84 3061
[21] Zhang X and Wu J 2012 Curr. Organ. Chem. 16 252
[22] Wakayama Y, Hayakawa R and Seo H S 2014 Sci. Technol. Adv. Mater. 15 024202
[23] Li T, Ruden P P, Campbell I H and Smith D L 2003 J. Appl. Phys. 93 4017
[24] Ou-Yang W, Weis M, Taguchi D Chen X Y, Manaka T and Iwamoto M 2010 J. Appl. Phys. 107 124506
[25] Ishikawa Y, Wada Y and Toyabe T 2010 J. Appl. Phys. 107 053709
[26] Melzer K, Brändlein M, Popescu B, Popescu D, Lugli P and Scarpa G 2014 Faraday Discuss 174 399
[27] Wang L and Beljonne D 2013 J. Chem. Phys. 139 064316
[28] Sharifi M J and Bazyar 2011 ACEEE Int. J. Control Sys. Instrum. 02 18
[29] Gill W D 1972 J. Appl. Phys. 43 5033
[30] W. Brütting 2005 Physics of Organic Semiconductors (Weinheim: Wiley-VCH) p. 1
[31] Noda K, Wada Y and Toyabe T. 2014 Jpn. J. Appl. Phys. 53 06JH02
[32] Matsumura M, Akai T, Saito M and Kimura T 1996 J. Appl. Phys. 79 264
[33] Parker I D 1994 J. Appl. Phys. 75 1656
[34] Zhen L, Guan W, Shang L, Liu M and Liu G 2008 J. Phys. D: Appl. Phys. 41 135111
[35] Wang W and Ma D G 2010 Chin. Phys. Lett. 27 018503
[36] Schroeder P G, France C B, Park J B and Parkinson B A 2002 J. Appl. Phys. 91 3010
[37] Ying J, Han J, Xiang L, Wang W and Xie W F 2015 Curr. Appl. Phys. 15 770
[38] Lee C, Hou T H and Kan C C 2005 IEEE Trans. Electron Dev. 52 2697
[39] Han J, Wang W, Ying J and Xie W F 2014 Appl. Phys. Lett. 104 013302
[1] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[2] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[3] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[4] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[5] Efficient design of perovskite solar cell using mixed halide and copper oxide
Navneet kour, Rajesh Mehra, Chandni. Chin. Phys. B, 2018, 27(1): 018801.
[6] Simulation design of P-I-N-type all-perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Yi-Fan Gu(顾一帆). Chin. Phys. B, 2017, 26(2): 028803.
[7] Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Jian-Zhuo Zhu(朱键卓). Chin. Phys. B, 2016, 25(10): 108802.
[8] Simulation study of the losses and influences of geminate and bimolecular recombination on the performances of bulk heterojunction organic solar cells
Zhu Jian-Zhuo (朱键卓), Qi Ling-Hui (祁令辉), Du Hui-Jing (杜会静), Chai Ying-Chun (柴莺春). Chin. Phys. B, 2015, 24(10): 108501.
No Suggested Reading articles found!