CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Numerical simulation study of organic nonvolatile memory with polysilicon floating gate |
Zhao-wen Yan(闫兆文), Jiao Wang(王娇), Jian-li Qiao(乔坚栗), Wen-jie Chen(谌文杰), Pan Yang(杨盼), Tong Xiao(肖彤), Jian-hong Yang(杨建红) |
Institute of Microelectronics, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract A polysilicon-based organic nonvolatile floating-gate memory device with a bottom-gate top-contact configuration is investigated,in which polysilicon is sandwiched between oxide layers as a floating gate. Simulations for the electrical characteristics of the polysilicon floating gate-based memory device are performed. The shifted transfer characteristics and corresponding charge trapping mechanisms during programing and erasing (P/E) operations at various P/E voltages are discussed. The simulated results show that present memory exhibits a large memory window of 57.5 V, and a high read current on/off ratio of ≈ 103. Compared with the reported experimental results, these simulated results indicate that the polysilicon floating gate based memory device demonstrates remarkable memory effects, which shows great promise in device designing and practical application.
|
Received: 26 November 2015
Revised: 31 January 2016
Accepted manuscript online:
|
PACS:
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
Corresponding Authors:
Jian-hong Yang
E-mail: yangjh@lzu.edu.cn
|
Cite this article:
Zhao-wen Yan(闫兆文), Jiao Wang(王娇), Jian-li Qiao(乔坚栗), Wen-jie Chen(谌文杰), Pan Yang(杨盼), Tong Xiao(肖彤), Jian-hong Yang(杨建红) Numerical simulation study of organic nonvolatile memory with polysilicon floating gate 2016 Chin. Phys. B 25 067102
|
[1] |
Leong W L, Mathews N, Tan B, Vaidyanathan S, Dötz F and Mhaisalkar S 2011 J. Mater. Chem. 21 5203
|
[2] |
Kang M, Kim Y A, Yun J M, Khim D, Kim J, Noh Y Y, Baeg K J and Kim D Y 2014 Nanoscale 6 12315
|
[3] |
Gao X, Liu C H, She X J, Li Q L, Liu J and Wang S D 2014 Org. Electron. 15 2486
|
[4] |
Cho I, Kim B J, Ryu S W, Cho J H and Cho J 2014 Nanotechnology 25 505604
|
[5] |
Dai M K, Lin T Y, Yang M H, Lee C K, Huang C C and Chen Y F 2014 J. Mater. Chem. C 2 5342
|
[6] |
Kaltenbrunner M, Stadler P, Schwödiauer R, Hassel A W, Sariciftci N S and Bauer S 2011 Adv. Mater. 23 4892
|
[7] |
Gao X, She X J, Liu C H, Sun Q J, Liu J and Wang S D 2013 Appl. Phys. Lett. 102 023303
|
[8] |
Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T and Someya T 2009 Science 326 1516
|
[9] |
Shang L, Ji Z, Wang H, Chen Y, Liu X, Han M and Liu M 2011 IEEE Electron Dev. Lett. 32 1451
|
[10] |
Kang M, Baeg K J, Khim D, Noh Y Y and Kim D Y 2013 Adv. Funct. Mater. 23 3503
|
[11] |
Haik M Y, Ayesh A I, Abdulrehman T and Haik Y 2014 Mater. Lett. 124 67
|
[12] |
Han S T, Zhou Y, Xu Z X, Roy V A L and Hung T F 2011 J. Mater. Chem. 21 14575
|
[13] |
Wang H, Ji Z, Shang L, Chen Y, Han M, Liu X, Peng Y Q and Liu M 2011 Org. Electron. 12 1236
|
[14] |
Yi M D, Xie M, Shao Y Q, Li W, Ling H F, Xie L H, Yang T, Fan Q L, Zhua J L and Huang W 2015 J. Mater. Chem. C 3 5220
|
[15] |
Tseng C W, Huang D C and Tao Y T 2015 ACS Appl. Mater. Interfaces 7 9767
|
[16] |
Kim Y N, Lee N H, Yun D Y and Kim T W 2015 Org. Electron. 25 165
|
[17] |
Jung J H, Kim S, Kim H, Park J and Oh J H 2015 Small 11 4976
|
[18] |
Lee K H, Tsai J R, Chang R D, Lin H C and Huang T Y 2013 Appl. Phys. Lett. 103 153102
|
[19] |
Gundlach D J, Lin Y Y, Jackson T N, Nelson S F and Schlom D G 1997 IEEE Electron Dev. Lett. 18 87
|
[20] |
Jurchescu O D, Baas J and Palstra T T M 2004 Appl. Phys. Lett. 84 3061
|
[21] |
Zhang X and Wu J 2012 Curr. Organ. Chem. 16 252
|
[22] |
Wakayama Y, Hayakawa R and Seo H S 2014 Sci. Technol. Adv. Mater. 15 024202
|
[23] |
Li T, Ruden P P, Campbell I H and Smith D L 2003 J. Appl. Phys. 93 4017
|
[24] |
Ou-Yang W, Weis M, Taguchi D Chen X Y, Manaka T and Iwamoto M 2010 J. Appl. Phys. 107 124506
|
[25] |
Ishikawa Y, Wada Y and Toyabe T 2010 J. Appl. Phys. 107 053709
|
[26] |
Melzer K, Brändlein M, Popescu B, Popescu D, Lugli P and Scarpa G 2014 Faraday Discuss 174 399
|
[27] |
Wang L and Beljonne D 2013 J. Chem. Phys. 139 064316
|
[28] |
Sharifi M J and Bazyar 2011 ACEEE Int. J. Control Sys. Instrum. 02 18
|
[29] |
Gill W D 1972 J. Appl. Phys. 43 5033
|
[30] |
W. Brütting 2005 Physics of Organic Semiconductors (Weinheim: Wiley-VCH) p. 1
|
[31] |
Noda K, Wada Y and Toyabe T. 2014 Jpn. J. Appl. Phys. 53 06JH02
|
[32] |
Matsumura M, Akai T, Saito M and Kimura T 1996 J. Appl. Phys. 79 264
|
[33] |
Parker I D 1994 J. Appl. Phys. 75 1656
|
[34] |
Zhen L, Guan W, Shang L, Liu M and Liu G 2008 J. Phys. D: Appl. Phys. 41 135111
|
[35] |
Wang W and Ma D G 2010 Chin. Phys. Lett. 27 018503
|
[36] |
Schroeder P G, France C B, Park J B and Parkinson B A 2002 J. Appl. Phys. 91 3010
|
[37] |
Ying J, Han J, Xiang L, Wang W and Xie W F 2015 Curr. Appl. Phys. 15 770
|
[38] |
Lee C, Hou T H and Kan C C 2005 IEEE Trans. Electron Dev. 52 2697
|
[39] |
Han J, Wang W, Ying J and Xie W F 2014 Appl. Phys. Lett. 104 013302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|