Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057102    DOI: 10.1088/1674-1056/25/5/057102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

Xiao-Lin Zhang(张晓林)1, Yuan-Yuan Wu(武媛媛)1, Xiao-Hong Shao(邵晓红)1, Yong Lu(鲁勇)2, Ping Zhang(张平)2
1. Beijing University of Chemical Technology, College of Science, Beijing 100029, China;
2. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2.
Keywords:  first-principles calculations      thermodynamic properties      phonon spectra      thorium hydrides  
Received:  01 December 2015      Revised:  15 January 2016      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.-x (Mechanical properties of solids)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.
Corresponding Authors:  Xiao-Hong Shao, Ping Zhang     E-mail:  shaoxh@mail.buct.edu.cn;zhangping@iapcm.ac.cn

Cite this article: 

Xiao-Lin Zhang(张晓林), Yuan-Yuan Wu(武媛媛), Xiao-Hong Shao(邵晓红), Yong Lu(鲁勇), Ping Zhang(张平) First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure 2016 Chin. Phys. B 25 057102

[1] Keller C 1976 Berlin-Heidelberg-New York
[2] Zhao C, Guo S P, Jiang H, Zhong G H and Su Y H 2015 J. Phys. Chem. C 119 13465
[3] Bickel M and Wedemeyer H 1986 Gmelin Handbook of Inorganic and Organometallic Chemistry, Thorium Supplement (Berlin: Springer)
[4] Benz R and Naoumidis A 1987 Gmelin Handbook of Inorganic Chemistry: 8th Edition, Thorium Supplement (Berlin: Springer)
[5] Kleykamp H 1992 Gmelin Handbook of Inorganic and Organometallic Chemistry, Thorium Supplement (Berlin: Springer)
[6] Brown D and Wedemayer H 1993 Gmelin Handbook of Inorganic and Organometallic Chemistry, Thorium Supplement (Berlin: Springer)
[7] Nigel P, Geckeis H and Holloway J H 1993 Gmelin Handbook of Inorganic and Organometallic Chemistry, Thorium Supplement (Berlin: Springer)
[8] Shein I R and Ivanovskii A L 2008 J. Struc. Chem. 49 348
[9] Muller W M, Blackledge J P and Libowitz G G 1968 Metal Hydrides 22
[10] Satterthwaite C B and Toepke I L 1970 Phys. Rev. Lett. 25 741
[11] Fisher E S and Renken C J 1964 Phys. Rev. 135 A482
[12] Lau K F, Vaughan R W and Satterthwaite C B 1977 Phys. Rev. B 15 2449
[13] Weaver J H, Knapp J A, Eastman D E, Peterson D T and Satterthwaite C B 1977 Phys. Rev. Lett. 39 639
[14] Dietrich M, Reichardt W and Rietschel H 1977 Solid State Commun. 21 603
[15] Brooks M S and Johansson B 1985 Physica B 130 516
[16] Shein I R, Shein K I, Medvedeva N I and Ivanovskii A L 2007 Physica B 389 296
[17] Wang B T, Zhang P, Song H Z, Shi H L, Li D F and Li W D 2010 J. Nucl. Mater. 401 124
[18] Rundle R E, Shull C G and Wollan E O 1952 Acta Cryst. 5 22
[19] Zachariasen W H 1953 Acta Cryst. 6 395
[20] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[21] Blochl P E 1994 Phys. Rev. B 50 17953
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. B 77 3865
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Nye J F 1957 Physical Properties of Crystals (Chapter VIII)
[25] Fan H, Wang S S and Li Y H 2015 Acta Phys. Sin. 64 097101 (in Chinese)
[26] Liu Q J, Zhang N C, Liu F S and Liu Z T 2014 Chin. Phys. B 23 047101
[27] Voigt W 1928 Lehrburch der Kristallphysik (Terubner: Leipzig)
[28] Reuss A and Angew Z 1929 Math. Mech. 9 49
[29] Hill R 1952 Phys. Soc. London 65 350
[30] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[31] Yang X Y, Lu Y, Zheng F W and Zhang P 2015 Chin. Phys. B 24 116301
[32] Pugh S F 1954 Philos. Mag. 45 823
[33] Wang B T, Zhang P, Lizarraga R, Marco I D and Eriksson O 2013 Phys. Rev. B 88 104107
[34] Souvatzis P and Eriksson 2008 Phys. Rev. B 77 024110
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[12] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[13] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[14] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[15] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
No Suggested Reading articles found!