CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improvement in electrical properties of high-κfilm on Ge substrate by an improved stress relieved pre-oxide method |
Ji-Bin Fan(樊继斌)1,2, Xiao-Fu Ding(丁晓甫)1, Hong-Xia Liu(刘红侠)2, Peng-Fei Xie(谢鹏飞)1, Yuan-Tao Zhang(张袁涛)1, Qing-Liang Liao(廖清良)1 |
1. School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China; 2. School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China |
|
|
Abstract High-κ/Ge gate stack has recently attracted a great deal of attention as a potential candidate to replace planar silicon transistors for sub-22 generation. However, the desorption and volatilization of GeO hamper the development of Ge-based devices. To cope with this challenge, various techniques have been proposed to improve the high-κ/Ge interface. However, these techniques have not been developed perfectly yet to control the interface. Therefore, in this paper, we propose an improved stress relieved pre-oxide (SRPO) method to improve the thermodynamic stability of the high-κ/Ge interface. The x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) results indicate that the GeO volatilization of the high-κ/Ge gate stack is efficiently suppressed after 500 ℃ annealing, and the electrical characteristics are greatly improved.
|
Received: 11 July 2015
Revised: 28 September 2015
Accepted manuscript online:
|
PACS:
|
77.55.D-
|
|
|
82.80.Pv
|
(Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))
|
|
Corresponding Authors:
Ji-Bin Fan
E-mail: jbfan@chd.edu.cn
|
Cite this article:
Ji-Bin Fan(樊继斌), Xiao-Fu Ding(丁晓甫), Hong-Xia Liu(刘红侠), Peng-Fei Xie(谢鹏飞), Yuan-Tao Zhang(张袁涛), Qing-Liang Liao(廖清良) Improvement in electrical properties of high-κfilm on Ge substrate by an improved stress relieved pre-oxide method 2016 Chin. Phys. B 25 027702
|
[1] |
Asahara R, Hideshima I, Oka H, Minoura Y, Ogawa S, Yoshigoe A, Teraoka Y, Hosoi T, Shimura T and Watanabe H 2015 Appl. Phys. Lett. 106 233503
|
[2] |
Fadida S, Palumbo F, Nyns L, Lin D, Van Elshocht S, Caymax M and Eizenberg M 2014 J. Vac. Sci. Technol. B 32 03D105
|
[3] |
Tan T T, Liu Z T and Li Y Y. 2011 Chin. Phys. Lett. 28 086803
|
[4] |
Xie Q, Deng S, Schaekers M, Lin D, Caymax M, Delabie A, Jiang Y, Qu X, Deduytsche D and Detavernier C 2011 IEEE Electron Dev. Lett. 32 1656
|
[5] |
Fan J B, Liu H X, Fei C X, Ma F, Fan X J and Hao Y 2013 Chin. Phys. B 22 037702
|
[6] |
Choi K, Jagannathan H, Choi C, Edge L, Ando T, Frank M, Jamison P, Wang M, Cartier E, Zafar S, Bruley J, Kerber A, Linder B, Callegari A, Yang Q, Brown S, Stathis J, Iacoponi J, Paruchuri V and Narayanan V 2009 VLSI Symp. Tech. Dig. p. 138
|
[7] |
Huang J, Kirsch P D, Oh J, Lee S H, Price J, Majhi P, Harris H R, Gilmer D C, Kelly D Q, Sivasubramani P, Bersuker G, Heh D, Young C, Park C S, Tan Y N, Goel N, Park C, Hung P Y, Lysaght P, Choi K J, Cho B J, Tseng H H, Lee B H and Jammy R 2008 VLSI Symp. Tech. Dig. p. 82
|
[8] |
Tatsuro M, Tetsuji Y, Masayasu N, Noriyuki M and Yukinori M 2006 J. Appl. Phys. 100 014101
|
[9] |
Caymaxa M, Van Elshocht S, Houssa M, Delabie A, Conard T, Meuris M, Heyns M M, Dimoulas A, Spiga S, Fanciulli M, Seo J W and Goncharova L V 2006 Mater. Sci. Eng. B 135 256
|
[10] |
Wang S K, Kita K, Nishimura T, Nagashio K and Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01
|
[11] |
Choi Y J, Lim H, Lee S, Suh S, Kim J R, Jung H S, Park S, Lee J H, Kim S G, Hwang C S and Kim H J 2014 ACS Appl. Mater. Interfaces 6 7885
|
[12] |
Xie Q, Deng S, SchaekersM, Lin D, Caymax M, Delabie A, Qu X P, Jiang Y L, Deduytsche D and Detavernier C 2012 Semicond. Sci. Technol. 27 074012
|
[13] |
Xie Q, Deduytsche D, Schaekers M, Caymax M, Delabie A, Qu X P and Detavernier C 2011 Electochem. Solid-State Lett. 14 G20
|
[14] |
Jung H S, Yu I H, Kim H K, Lee S Y, Lee J, Choi Y J, Chung Y J, Lee N I, Park T J, Choi J H and Hwang C S 2012 IEEE Trans. Electron Dev. 59 2350
|
[15] |
Yang X, Wang S K, Zhang X, Sun B, Zhao W, Chang H D, Zeng Z H and Liu H G 2014 Appl. Phys. Lett. 105 092101
|
[16] |
Sun J B, Yang Z W, Geng Y, Lu H L, Wu W R, Ye X D, Zhang W, Shi Y and Zhao Y 2013 Chin. Phys. B 22 067701
|
[17] |
Chang K S, Fu C H, Lu C C, Chang Y A, Hsu Y Y, Tsao C H, Wang T K, Heh D W, Li Y C, Tsai W F, Ai C F, Hou F C and Hsu Y T 2011 ECS Trans. 35 39
|
[18] |
Van Elshocht S, Caymax M, Conard T, De Gendt S, Hoflijk I, Houssa M, De Jaeger B, Van Sttebergen J, Heyns M and Merius M 2006 Appl. Phys. Lett. 88 141904
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|