CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Realization of a flux-driven memtranstor at room temperature |
Shi-Peng Shen(申世鹏), Da-Shan Shang(尚大山), Yi-Sheng Chai(柴一晟), Young Sun(孙阳) |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The memtranstor has been proposed to be the fourth fundamental circuit memelement in addition to the memristor, memcapacitor, and meminductor. Here, we demonstrate the memtranstor behavior at room temperature in a device made of the magnetoelectric hexaferrite (Ba0.5Sr1.5Co2Fe11AlO22) where the electric polarization is tunable by external magnetic field. This device shows a nonlinear q-φ relationship with a butterfly-shaped hysteresis loop, in agreement with the anticipated memtranstor behavior. The memtranstor, like other memelements, has a great potential in developing more advanced circuit functionalities.
|
Received: 19 December 2015
Revised: 22 December 2015
Accepted manuscript online:
|
PACS:
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11227405, 11534015, 11274363, and 11374347), and the Natural Science Foundation from the Chinese Academy of Sciences (Grant No. XDB07030200). |
Corresponding Authors:
Da-Shan Shang
E-mail: shangdashan@iphy.ac.cn
|
Cite this article:
Shi-Peng Shen(申世鹏), Da-Shan Shang(尚大山), Yi-Sheng Chai(柴一晟), Young Sun(孙阳) Realization of a flux-driven memtranstor at room temperature 2016 Chin. Phys. B 25 027703
|
[1] |
Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
|
[2] |
Borghetti J Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
|
[3] |
Pershin Y V and Ventra M D 2011 Adv. Phys. 60 145
|
[4] |
Ventra M D and Pershin Y V 2009 Proc. IEEE 97 1717
|
[5] |
Jo S H Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
|
[6] |
Ventra M D and Pershin Y V 2011 Mater. Today 14 584
|
[7] |
Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
|
[8] |
Chua L O 1971 IEEE Trans. Circuit Theory 18 507
|
[9] |
Chua L O and Kang S M 1976 Proc. IEEE 64 209
|
[10] |
Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
|
[11] |
Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
|
[12] |
Shang D S, Sun J R, Shen B G and Wuttig M 2013 Chin. Phys. B 22 067202
|
[13] |
Chua L O 2011 Appl. Phys. A 102 765
|
[14] |
Vongehr S and Meng X 2015 Sci. Rep. 5 11657
|
[15] |
Mathur N D 2008 Nature 455 E13
|
[16] |
Shang D S, Chai Y S, Lu J, Cao Z X and Sun Y 2015 Chin. Phys. B 24 068402
|
[17] |
Popov Y F, Kadomtseva A M, Belov D V and Vorobev G P 1999 JETP Lett. 69 330
|
[18] |
Iyama A and Kimura T 2013 Phys. Rev. B 87 180408
|
[19] |
Ishiwata S, Taguchi Y, Murakawa H, Onose Y and Tokura Y 2008 Science 319 1643
|
[20] |
Kimura T, Lawes G and Ramirez A P 2005 Phys. Rev. Lett. 94 137201
|
[21] |
Chun S H, Chai Y S, Oh Y S, Jaiswal-Nagar D, Haam SY, Kim I, Lee B, Nam D H, Ko K T, Park J H, Chung J H and Kim K H 2010 Phys. Rev. Lett. 104 037204
|
[22] |
Shen S P, Yan L Q, Chai Y S, Cong J Z and Sun Y 2014 Appl. Phys. Lett. 104 032905
|
[23] |
Wang F, Zou T, Yang L Q, Liu Y and Sun Y 2012 Appl. Phys. Lett. 100 122901
|
[24] |
Hirose S, Haruki K, Ando A and Kimula T 2014 Appl. Phys. Lett. 104 022907
|
[25] |
Momozawa N and Yamaguchi Y 1993 J. Phys. Soc. Jpn. 62 1292
|
[26] |
Lee H B, Song J H, Chung J H, Chun S H, Chai Y S, Kim K H, Reehuis M, Prokes K and Mat'aš S 2011 Phys. Rev. B 83 144425
|
[27] |
Ishiwata S, Okuyama, Kakurai K, Nishi M, Taguchi Y and Tokura Y 2010 Phys. Rev. B 81 174418
|
[28] |
Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
|
[29] |
Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
|
[30] |
Tokunaga Y, Kaneko Y, Okuyama D, Ishiwata S, Arima T, Wakimoto S, Kakurai K, Taguchi Y and Tokura T 2010 Phys. Rev. Lett. 105 257201
|
[31] |
Kitagawa Y, Hiraoka Y, Honda T, Kshikura T, Nakamura H and Kimura T 2010 Nat. Mater. 9 797
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|