Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040306    DOI: 10.1088/1674-1056/abe298
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Quantum annealing for semi-supervised learning

Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍)
1 Hisilicon Research, Huawei Technologies Co., Ltd., Shenzhen, China
Abstract  Recent advances in quantum technology have led to the development and the manufacturing of programmable quantum annealers that promise to solve certain combinatorial optimization problems faster than their classical counterparts. Semi-supervised learning is a machine learning technique that makes use of both labeled and unlabeled data for training, which enables a good classifier with only a small amount of labeled data. In this paper, we propose and theoretically analyze a graph-based semi-supervised learning method with the aid of the quantum annealing technique, which efficiently utilizes the quantum resources while maintaining good accuracy. We illustrate two classification examples, suggesting the feasibility of this method even with a small portion (30%) of labeled data involved.
Keywords:  quantum annealing      semi-supervised learning      machine learning  
Received:  14 October 2020      Revised:  23 December 2020      Accepted manuscript online:  03 February 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
Corresponding Authors:  Corresponding author. E-mail: wei.geng@huawei.com   

Cite this article: 

Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍) Quantum annealing for semi-supervised learning 2021 Chin. Phys. B 30 040306

1 Michie D, Spiegelhalter D J and Taylor C C 1994 Machine Learning, Neural and Statistical Classification (New Jersey: Ellis Horwood ) pp. 1-6
2 Christopher M B Pattern recognition and machine learning(New York: Springer) pp. 1-4
3 Steane A 1998 Rep. Prog. Phys. 61 117
4 Hirvensalo M 2013 Quantum Computing (Springer Science & Business Media) pp. 49-71
5 Shor P 1994 Proceedings 35th annual symposium on foundations of computer science, IEEE, pp. 124-134
6 Zhang S, Duan Q H, Li T, Fu X Q, Huang H L, Wang X and Bao W S 2020 Chin. Phys. B 29 010308
7 Zheng S B 2005 Chin. Phys. 14 2222
8 Schuld M, Sinayskiy I and Petruccione F 2015 Contemp. Phys. 56 172
9 Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195
11 Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
12 Lloyd S, Mohseni M and Rebentrost P 2014 Nat. Phys. 10 631
13 Gao X, Zhang Z Y and Duan L M 2019 Sci. Adv. 4 eaat9004
14 Preskill J Quantum 2 79
15 Neukart F, Compostella G, Seidel C, Von Dollen D, Yarkoni S and Parney B 2017 Front. ICT 4 29
16 Babbush R, Love P J and Aspuru-Guzik A 2014 Sci. Rep. 4 6603
17 Chapelle O, Scholkopf B and Zien A 2009 IEEE Trans. Nerual Netw. Learn. Syst. 20 542
19 Zhu X and Goldberg A B 2009 Synth. Lect. Artif. Intell. Mach. Learn. 3 1
20 Zhou X and Belkin M Academic Press Library in Signal Processing, Volume 1: Signal Processing Theory and Machine Learning, Chapter 22 -Semi-Supervised Learning(Amsterdam: Elsevier) pp. 1239-1269
21 Zha Z J, Mei T, Wang J D and Hua X S 2009 J. Vis. Commun. Image Represent. 20 97
22 Roweis S T and Saul L K 2000 Science 290 2323
23 Kambhatla N and Leen T K 1997 Neural Comput. 9 1493
24 Fergus R, Weiss Y and Torralba A Advances in neural information processing systems 22, December 7-10, 2009, Vancouver, British Columbia, Canada, pp. 522-530
25 Liu W, He J and Chang S F The 27th International Conference on Machine Learning, June 21-24, 2010, Haifa, Israel, 2010, pp. 1-8
26 Zhou D, Bousquet O, Lal T N and Schölkopf B Conference and Workshop on Neural Information Processing Systems December 13-18, 2004, Vancouver, British Columbia, Canada, pp. 595-602
27 Kadowaki T and Nishimori H 1998 Phys. Rev. E 58 5355
28 Bunyk P I, Hoskinson E M, Johnson M W, Tolkacheva E, Altomare F, Berkley A J, Harris R, Hilton J P, Lanting T, Przybysz A J and Whittaker J 2014 IEEE Trans. Appl. Supercond. 24 1
29 Boixo S, Albash T, Spedalieri F M, Chancellor N and Lidar D A 2013 Nat. Commun. 4 2067
30 Boixo S, Rønnow T F, Isakov S V, Wang Z, Wecker D, Lidar D A, Martinis J M and Troyer M 2014 Nat. Phys. 10 218
31 Ray P, Chakrabarti B K and Chakrabarti A 1989 Phys. Rev. B 39 11828
32 Van Dam W, Mosca M and Vazirani U In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, October 8-11, 2001, Newport Beach, CA, USA, pp. 279-287
33 Kumar V, Bass G, Tomlin C and Dulny J 2018 Quantum Inf. Process. 17 39
35 Marto\vn àk R, Santoro G E and Tosatti E 2004 Phys. Rev. E 70 057701
36 Tanaka S, Matsuda Y and Togawa N 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), January 13-16, 2020, Beijing, China, pp. 659-666
37 Choi V 2008 Quantum Inf. Process. 7 193
38 Lucas A
39 Amin M H, Andryash E, Rolfe J, Kulchytskyy B and Melko R 2018 Phys. Rev. X 8 021050
40 Hinton G E and Sejnowski T J hinton/absps/pdp7.pdf1986 Parallel distributed processing: Explorations in the microstructure of cognition (Cambridge: MIT Press) 1 282-317
41 Fisher R A 1936 Ann. Eugen. 7 179
42 Kessy A, Lewin A and Strimmer, K 2018 Am. Stat. 72 309
43 Horn D and Gottlieb A 2001 Phys. Rev. Lett. 88 018702
44 Kurihara K, Tanaka S and Miyashita S 2014 arXiv:1408.2035 [quant-ph]
46 Li Z, Liu X, Xu N and Du J 2015 Phys. Rev. Lett. 114 140504
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[5] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[6] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[9] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[10] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[11] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[12] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
[13] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[14] Machine learning in materials design: Algorithm and application
Zhilong Song(宋志龙), Xiwen Chen(陈曦雯), Fanbin Meng(孟繁斌), Guanjian Cheng(程观剑), Chen Wang(王陈), Zhongti Sun(孙中体), and Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(11): 116103.
[15] Methods and applications of RNA contact prediction
Huiwen Wang(王慧雯) and Yunjie Zhao(赵蕴杰)†. Chin. Phys. B, 2020, 29(10): 108708.
No Suggested Reading articles found!