ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing |
Limeng Zhang(张李萌)1, Jinbo Chen(陈锦波)1, Jierong Gu(顾杰荣)2, Yixiao Gao(高一骁)1, Xiang Shen(沈祥)1,†, Yimin Chen(陈益敏)3,‡, and Tiefeng Xu(徐铁峰)1,2 |
1 Laboratory of Infrared Materials and Devices & Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, China; 2 Ningbo Institute of Oceanography, Ningbo 315832, China; 3 Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract We reported a chalcogenide glass-based rib waveguide fabricated using photolithography and dry etching method. A commercial software (COMSOL Multiphysics) was used to optimize the waveguide structure and the distribution of the fundamental modes in the waveguide based on the complete vector finite component. We further employed thermal annealing to optimize the surface and sidewalls of the rib waveguides. It was found that the optimal annealing temperature for GeAsSeS films is 220 °C, and the roughness of the films could be significantly reduced by annealing. The zero-dispersion wavelength (ZDW) could be shifted to a short wavelength around ∼ 2.1 μ m via waveguide structural optimization, which promotes supercontinuum generation with a short wavelength pump laser source. The insertion loss of the waveguides with cross-sectional areas of 4.0 μ m× 3.5 μ m and 6.0 μ m× 3.5 μ m was measured using lens fiber and the cut-back method. The propagation loss of the 220 °C annealed waveguides could be as low as 1.9 dB/cm at 1550 nm.
|
Received: 15 October 2020
Revised: 22 December 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
42.82.-m
|
(Integrated optics)
|
|
42.82.Cr
|
(Fabrication techniques; lithography, pattern transfer)
|
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61904091 and 61775111), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18E010002), the Natural Science Foundation of Ningbo City, China (Grant No. 2019A610065), the International Cooperation Project of Ningbo City, China (Grant No. 2017D10009), and K. C. Wong Magna Fund in Ningbo University, China. |
Corresponding Authors:
†Corresponding author. E-mail: shenxiang@nbu.edu.cn ‡Corresponding author. E-mail: chenyimin@nbu.edu.cn
|
Cite this article:
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰) Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing 2021 Chin. Phys. B 30 034210
|
1 Dudley J M and Taylor J R 2010 Supercontinuum Generation in Optical Fibers (Cambridge: Cambridge University Press) 2 Colley C S, Hebden J C, Delpy D T, Cambrey A D, Brown R A, Zibik E A, Ng W H, Wilson L R and Cockburn J W 2007 Rev. Sci. Instrum. 78 123108 3 Guo B, Wang Y, Peng C, Zhang H L, Luo G P, Le H Q, Gmachl C, Sivco D L, Peabody M L and Cho A Y 2004 Opt. Express 12 208 4 Zhang L, Huang X, Fan X, He W, Yang C and Wang C 2019 Environ. Technol. 42 270 5 Vainio M and Karhu J 2017 Opt Express 25 4190 6 Abeeluck A K and Headley C 2005 Opt. Lett. 30 61 7 Yu Y, Gai X, Ma P, Vu K, Yang Z, Wang R, Choi D Y, Madden S and Luther-Davies B 2016 Opt. Lett. 41 958 8 Hsieh I W, Chen X, Dadap J I, Panoiu N C, Osgood R M, McNab S J and Vlasov Y A 2006 Opt. Express 14 12380 9 Christensen S, Rao D S S, Bang O and Bache M 2019 J. Opt. Soc. Am. B 36 A131 10 Gai X, Madden S, Choi D Y, Bulla D and Luther-Davies B 2010 Opt. Express 18 18866 11 Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photonics 5 141 12 Lucas J 1999 Curr. Opin. Solid State Mater. Sci. 4 181 13 Yin L and Agrawal G 2007 Opt. Lett. 32 2031 14 Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S and Luther-Davies B 2014 Opt. Mater. Express 4 1011 15 Yeom D I, Magi E, Lamont M, Roelens M, Fu L and Eggleton B 2008 Opt. Lett. 33 660 16 Harbold J M, Ilday F \"O, Wise F W, Sanghera J S, Nguyen V Q, Shaw L B and Aggarwal I D 2002 Opt. Lett. 27 119 17 Qu\'emard C, Smektala F, Couderc V, Barth\'el\'emy A and Lucas J 2001 J. Phys. Chem. Solids 62 1435 18 Petit L, Carlie N, Chen H, Gaylord S, Massera J, Boudebs G, Hu J, Agarwal A, Kimerling L and Richardson K 2009 J. Solid State Chem. 182 2756 19 Smektala F, Quemard C, Leneindre L, Lucas J, Barth\'el\'emy A and Angelis C D 1998 J. Non-Cryst. Solids 239 139 20 Karim M R, Rahman B M A and Agrawal G P 2015 Opt. Express 23 6903 21 Karim M R and Rahman B M A 2016 Opt. Quantum Electron. 48 174 22 Zhang X, Hu H, Li W and Dutta N K 2016 J. Mod. Opt. 63 1965 23 Estevez M C, Alvarez M and Lechuga L M 2012 Laser Photonics Rev. 6 463 24 Zhang W, Dai S, Shen X, Chen Y, Zhao S, Lin C, Zhang L and Bai J 2013 Mater. Lett. 98 42 25 Zuo H, Yu S, Gu T and Hu J 2019 Opt. Express 27 11152 26 Su X, Wang R, Luther-Davies B and Wang L 2013 Appl. Phys. A 113 575 27 Wang R, Yan K, Yang Z and Luther-Davies B 2015 J. Non-Cryst. Solids 427 16 28 Zhao Z, Chen P, Wang X, Xue Z, Tian Y, Jiao K, Wang X g, Peng X, Zhang P, Shen X, Dai S, Nie Q and Wang R 2019 J. Am. Ceram. Soc. 102 5172 29 Singh S T, Phuoc T H N, Kenshiro N, Xing L, Hoang T T, Takenobu S and Yasutake O 2018 Appl. Opt. 57 1689 30 Ahmad H, Karim M R and Rahman B M A 2018 Appl. Phys. B 124 47 31 Gai X, Choi D Y, Madden S, Yang Z, Wang R and Luther-Davies B 2012 Opt. Lett. 37 3870 32 Zakery A, Ruan Y, Rode A V, Samoc M and Luther-Davies B 2003 J. Opt. Soc. Am. B 20 1844 33 Bryce R, Nguyen H, Ponnampalam N, DeCorby R, Dewedi P, Haugen C, McMullin J and Kasap S 2004 J. Vac. Sci Technol. A 22 1044 34 Guo P, Li C, Huang W, Zhang W, Zhang P and Xu T 2020 Opt. Mater. Express 10 129 35 Choi D Y, Madden S, Bulla D, Wang R, Rode A and Luther-Davies B 2010 J. Appl. Phys. 107 053106 36 Zhao Y, Li C, Guo P, Zhang W, Xu P and Zhang P 2019 Opt. Mater. 92 206 37 Fan Z, Yan K, Zhang L, Qin J, Chen J, Wang R and Shen X 2020 Appl. Opt. 59 1564 38 Wu G, Mirza A R, Gamage S K, Ukrainczyk L, Shashidhar N, Wruck G and Ruda M 2004 J. Micromech. Microeng. 14 1367 39 Choi C G, Han Y T, Kim J T and Schift H J A P L 2007 Appl. Phys. Lett. 90 221109 40 Nguyen M H, Chang C J, Lee M C and Tseng F G 2011 Opt. Express 19 18956 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|