Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027201    DOI: 10.1088/1674-1056/25/2/027201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling

Nai-Qing Liu(刘乃清), Li-Jie Huang(黄立捷), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾)
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China
Abstract  We have studied the characteristics of current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling. It was found that within some parameter regions the magnitude of the current induced nonequilibrium spin polarization density in such structures will increase (or decrease) with the decrease (or increase) of the charge current density, in contrast to that found in normal spin-orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.
Keywords:  semiconductor/superconductor junctions      spin-orbit coupling      Andreev reflection      current induced spin polarization  
Received:  29 July 2015      Revised:  11 October 2015      Accepted manuscript online: 
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474106).
Corresponding Authors:  Liang-Bin Hu     E-mail:  lbhu26@yahoo.com

Cite this article: 

Nai-Qing Liu(刘乃清), Li-Jie Huang(黄立捷), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾) Current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling 2016 Chin. Phys. B 25 027201

[1] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[2] Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer)
[3] Awschalom D D and Flatte M E 2007 Nat. Phys. 3 153
[4] Wu M W, Jiang J H and Weng M Q 2010 Phys. Rep. 493 61
[5] Winkler R 2003 Spin-Orbit Coupling Effects in Two Dimensional Electron and Hole Systems (Berlin: Springer)
[6] Yang C L, Wang J L, Ge W K, Cui L J and Zhang Y P 2007 Physics 36 7 (in Chinese)
[7] Murakami S, Naogaosa N and Zhang S C 2003 Science 301 1348
[8] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[9] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[10] Wunderlich J, Kastner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[11] Edelstein V M 1990 Solid State Commun. 73 233
[12] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2005 Appl. Phys. Lett. 87 022503
[13] Zyuzin V A, Silvestrov P G and Mishchenko E G 2007 Phys. Rev. Lett. 99 106601
[14] Bokes P, Corsetti F and Godby R W 2008 Phys. Rev. Lett. 101 046402
[15] Silvestrov P G, Zyuzin V A and Mishchenko E G 2009 Phys. Rev. Lett. 102 196802
[16] Rech J, Micklitz T and Matveev K A 2009 Phys. Rev. Lett. 102 116402
[17] Teodorescu V and Winkler R 2009 Phys. Rev. B 80 041311
[18] Bokes P and Horvath F 2010 Phys. Rev. B 81 125302
[19] Sonin E B 2010 Phys. Rev. B 81 113304
[20] Duckheim M, Loss D, Scheid M, Richter K, Adagideli I and Jacquod P 2010 Phys. Rev. B 81 085303
[21] Linder J, Yokoyama T and Sudbo A 2010 Phys. Rev. B 81 075312
[22] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610
[23] Walser M P, Reichl C, Wegscheider W and Salis G 2012 Nat. Phys. 8 757
[24] Kunihashi Y, Kohda M and Nitta J 2012 Phys. Rev. B 85 035321
[25] Shi J R, Zhang P, Xiao D and Niu Q 2006 Physics 35 720 (in Chinese)
[26] Linder J and Yokoyama T 2011 Phys. Rev. Lett. 106 237201
[27] Lv B, Zhang C and Ma Z S 2012 Phys. Rev. Lett. 108 077002
[28] Xu L T and Li X Q 2014 Europhys. Lett. 108 67013
[29] Hao X J, Li H O, Tu T, Zhou C, Cao G, Guo G C, Guo G P, Fung W Y, Ji Z Q and Lu W 2011 Phys. Rev. B 84 195448
[30] Takei S and Galitski V 2012 Phys. Rev. B 86 054521
[31] Bergeret F S and Tokatly I V 2014 Phys. Rev. B 89 134517
[32] de Jong M J M and Beenakker C W J 1995 Phys. Rev. Lett. 74 1657
[33] Zutic I and Walls O T 2000 Phys. Rev. B 61 1555
[34] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[35] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
[36] Bychkov Y and Rashba E I 1984 J. Phys. C 17 6039
[37] Dresselhaus G 1955 Phys. Rev. 100 580
[38] Yang J, Zhang X and Miao R D 2014 Acta Phys. Sin. 63 217202 (in Chinese)
[39] Tang H Z, Zhai L X, Shen M and Liu J J 2015 Chin. Phys. B 24 030303
[40] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin transport properties in ferromagnet/superconductor junctions on topological insulator
Hong Li(李红) and Xin-Jian Yang(杨新建). Chin. Phys. B, 2022, 31(12): 127301.
[14] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!