CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling |
Nai-Qing Liu(刘乃清), Li-Jie Huang(黄立捷), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾) |
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China |
|
|
Abstract We have studied the characteristics of current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling. It was found that within some parameter regions the magnitude of the current induced nonequilibrium spin polarization density in such structures will increase (or decrease) with the decrease (or increase) of the charge current density, in contrast to that found in normal spin-orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.
|
Received: 29 July 2015
Revised: 11 October 2015
Accepted manuscript online:
|
PACS:
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474106). |
Corresponding Authors:
Liang-Bin Hu
E-mail: lbhu26@yahoo.com
|
Cite this article:
Nai-Qing Liu(刘乃清), Li-Jie Huang(黄立捷), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾) Current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling 2016 Chin. Phys. B 25 027201
|
[1] |
Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[2] |
Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer)
|
[3] |
Awschalom D D and Flatte M E 2007 Nat. Phys. 3 153
|
[4] |
Wu M W, Jiang J H and Weng M Q 2010 Phys. Rep. 493 61
|
[5] |
Winkler R 2003 Spin-Orbit Coupling Effects in Two Dimensional Electron and Hole Systems (Berlin: Springer)
|
[6] |
Yang C L, Wang J L, Ge W K, Cui L J and Zhang Y P 2007 Physics 36 7 (in Chinese)
|
[7] |
Murakami S, Naogaosa N and Zhang S C 2003 Science 301 1348
|
[8] |
Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
|
[9] |
Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
|
[10] |
Wunderlich J, Kastner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
|
[11] |
Edelstein V M 1990 Solid State Commun. 73 233
|
[12] |
Kato Y K, Myers R C, Gossard A C and Awschalom D D 2005 Appl. Phys. Lett. 87 022503
|
[13] |
Zyuzin V A, Silvestrov P G and Mishchenko E G 2007 Phys. Rev. Lett. 99 106601
|
[14] |
Bokes P, Corsetti F and Godby R W 2008 Phys. Rev. Lett. 101 046402
|
[15] |
Silvestrov P G, Zyuzin V A and Mishchenko E G 2009 Phys. Rev. Lett. 102 196802
|
[16] |
Rech J, Micklitz T and Matveev K A 2009 Phys. Rev. Lett. 102 116402
|
[17] |
Teodorescu V and Winkler R 2009 Phys. Rev. B 80 041311
|
[18] |
Bokes P and Horvath F 2010 Phys. Rev. B 81 125302
|
[19] |
Sonin E B 2010 Phys. Rev. B 81 113304
|
[20] |
Duckheim M, Loss D, Scheid M, Richter K, Adagideli I and Jacquod P 2010 Phys. Rev. B 81 085303
|
[21] |
Linder J, Yokoyama T and Sudbo A 2010 Phys. Rev. B 81 075312
|
[22] |
Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610
|
[23] |
Walser M P, Reichl C, Wegscheider W and Salis G 2012 Nat. Phys. 8 757
|
[24] |
Kunihashi Y, Kohda M and Nitta J 2012 Phys. Rev. B 85 035321
|
[25] |
Shi J R, Zhang P, Xiao D and Niu Q 2006 Physics 35 720 (in Chinese)
|
[26] |
Linder J and Yokoyama T 2011 Phys. Rev. Lett. 106 237201
|
[27] |
Lv B, Zhang C and Ma Z S 2012 Phys. Rev. Lett. 108 077002
|
[28] |
Xu L T and Li X Q 2014 Europhys. Lett. 108 67013
|
[29] |
Hao X J, Li H O, Tu T, Zhou C, Cao G, Guo G C, Guo G P, Fung W Y, Ji Z Q and Lu W 2011 Phys. Rev. B 84 195448
|
[30] |
Takei S and Galitski V 2012 Phys. Rev. B 86 054521
|
[31] |
Bergeret F S and Tokatly I V 2014 Phys. Rev. B 89 134517
|
[32] |
de Jong M J M and Beenakker C W J 1995 Phys. Rev. Lett. 74 1657
|
[33] |
Zutic I and Walls O T 2000 Phys. Rev. B 61 1555
|
[34] |
Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
|
[35] |
Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
|
[36] |
Bychkov Y and Rashba E I 1984 J. Phys. C 17 6039
|
[37] |
Dresselhaus G 1955 Phys. Rev. 100 580
|
[38] |
Yang J, Zhang X and Miao R D 2014 Acta Phys. Sin. 63 217202 (in Chinese)
|
[39] |
Tang H Z, Zhai L X, Shen M and Liu J J 2015 Chin. Phys. B 24 030303
|
[40] |
Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|