Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117403    DOI: 10.1088/1674-1056/ac7553
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction

Xingfei Zhou(周兴飞)1,†, Ziming Xu (许子铭)1, Deliang Cao(曹德亮)1, and Fenghua Qi(戚凤华)2,‡
1 New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
Abstract  We investigate the Andreev reflection across a uniaxial strained graphene-based superconducting junction. Compared with pristine graphene-based superconducting junction, three opposite properties are found. Firstly, in the regime of the interband conversion of electron-hole, the Andreev retro-reflection happens. Secondly, in the regime of the intraband conversion of electron-hole, the specular Andreev reflection happens. Thirdly, the perfect Andreev reflection, electron-hole conversion with unit efficiency, happens at a nonzero incident angle of electron. These three exotic properties arise from the strain-induced anisotropic band structure of graphene, which breaks up the original relation between the direction of velocity of particle and the direction of the corresponding wavevector. Our finding gives an insight into the understanding of Andreev reflection and provides an alternative method to modulate the Andreev reflection.
Keywords:  graphene      uniaxial strain      anisotropic Andreev reflection  
Received:  26 January 2022      Revised:  20 May 2022      Accepted manuscript online:  02 June 2022
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  73.23.Ad (Ballistic transport)  
  85.25.-j (Superconducting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104232, 11805103, and 11804167), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20190137 and BK20180739), the Innovation Research Project of Jiangsu Province, China (Grant No. CZ0070619002), and NJUPT-SF (Grant No. NY218128).
Corresponding Authors:  Xingfei Zhou, Fenghua Qi     E-mail:  zxf@njupt.edu.cn;qifenghua@njxzc.edu.cn

Cite this article: 

Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华) Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction 2022 Chin. Phys. B 31 117403

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[4] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[6] Qiao Z, Tse W K, Jiang H, Yao Y and Niu Q 2011 Phys. Rev. Lett. 107 256801
[7] Zhai X and Jin G 2014 Phys. Rev. B 89 235416
[8] Wang W, Lü X and Xie H 2021 Chin. Phys. B 30 066701
[9] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[10] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[11] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett. 122 106405
[12] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059
[13] de Abajo F J G 2013 Science 339 917
[14] Koppens F, Mueller T, Avouris P, Ferrari A, Vitiello M and Polini M 2014 Nat. Nanotechnol. 9 780
[15] Young A F and Kim P 2011 Annual Review of Condensed Matter Physics 2 101
[16] Goerbig M O, Fuchs J N, Montambaux G and Piéchon F 2008 Phys. Rev. B 78 045415
[17] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
[18] Andreev A F 1964 Sov. Phys. JETP 19 1228
[19] Ludwig T 2007 Phys. Rev. B 75 195322
[20] Zhang Q, Fu D, Wang B, Zhang R and Xing D Y 2008 Phys. Rev. Lett. 101 047005
[21] Cheng S G, Xing Y, Wang J and Sun Q F 2009 Phys. Rev. Lett. 103 167003
[22] Rainis D, Taddei F, Dolcini F, Polini M and Fazio R 2009 Phys. Rev. B 79 115131
[23] Cheng S G, Zhang H and Sun Q F 2011 Phys. Rev. B 83 235403
[24] Schelter J, Trauzettel B and Recher P 2012 Phys. Rev. Lett. 108 106603
[25] Zhai X and Jin G 2014 Phys. Rev. B 89 085430
[26] Linder J and Yokoyama T 2014 Phys. Rev. B 89 020504
[27] Majidi L, Rostami H and Asgari R 2014 Phys. Rev. B 89 045413
[28] Efetov D K, Wang L, Handschin C, Efetov K B, Shuang J, Cava R, Taniguchi T, Watanabe K, Hone J, Dean C R and Kim P 2015 Nat. Phys. 12 328
[29] Sahu M R, Raychaudhuri P and Das A 2016 Phys. Rev. B 94 235451
[30] Linder J and Yokoyama T 2017 Phys. Rev. B 95 144515
[31] Li C X, Wang S K and Wang J 2017 Chin. Phys. B 26 027304
[32] Qi F, Cao J, Cao J and Zhang L 2018 Chin. Phys. B 27 127401
[33] Soori A, Sahu M R, Das A and Mukerjee S 2018 Phys. Rev. B 98 075301
[34] Pandey P, Kraft R, Krupke R, Beckmann D and Danneau R 2019 Phys. Rev. B 100 165416
[35] Wang C, Zhang L, Zhang P, Song J and Li Y X 2020 Phys. Rev. B 101 045407
[36] Lv B, Zhang C and Ma Z 2012 Phys. Rev. Lett. 108 077002
[37] Zhou X 2020 Phys. Rev. B 102 045132
[38] Cheng R and Zhou X 2020 Europhys. Lett. 130 17004
[39] Xu Y and Zhou X 2021 Results in Physics 27 104523
[40] Zhu C Y, Xu W H, Zhou Y L, Ba J Y, Deng M X, Duan H J and Wang R Q 2021 Phys. Rev. B 103 075148
[41] Zhou X 2019 Phys. Rev. B 100 195139
[42] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[43] Garza H H P, Kievit E W, Schneider G F and Staufer U 2014 Nano Lett. 14 4107
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!