Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞)1,†, Ziming Xu (许子铭)1, Deliang Cao(曹德亮)1, and Fenghua Qi(戚凤华)2,‡
1 New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
Abstract We investigate the Andreev reflection across a uniaxial strained graphene-based superconducting junction. Compared with pristine graphene-based superconducting junction, three opposite properties are found. Firstly, in the regime of the interband conversion of electron-hole, the Andreev retro-reflection happens. Secondly, in the regime of the intraband conversion of electron-hole, the specular Andreev reflection happens. Thirdly, the perfect Andreev reflection, electron-hole conversion with unit efficiency, happens at a nonzero incident angle of electron. These three exotic properties arise from the strain-induced anisotropic band structure of graphene, which breaks up the original relation between the direction of velocity of particle and the direction of the corresponding wavevector. Our finding gives an insight into the understanding of Andreev reflection and provides an alternative method to modulate the Andreev reflection.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104232, 11805103, and 11804167), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20190137 and BK20180739), the Innovation Research Project of Jiangsu Province, China (Grant No. CZ0070619002), and NJUPT-SF (Grant No. NY218128).
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华) Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction 2022 Chin. Phys. B 31 117403
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666 [2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature438 201 [3] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys.2 620 [4] Beenakker C W J 2006 Phys. Rev. Lett.97 067007 [5] Kane C L and Mele E J 2005 Phys. Rev. Lett.95 146802 [6] Qiao Z, Tse W K, Jiang H, Yao Y and Niu Q 2011 Phys. Rev. Lett.107 256801 [7] Zhai X and Jin G 2014 Phys. Rev. B89 235416 [8] Wang W, Lü X and Xie H 2021 Chin. Phys. B30 066701 [9] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA108 12233 [10] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature556 43 [11] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett.122 106405 [12] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science363 1059 [13] de Abajo F J G 2013 Science339 917 [14] Koppens F, Mueller T, Avouris P, Ferrari A, Vitiello M and Polini M 2014 Nat. Nanotechnol.9 780 [15] Young A F and Kim P 2011 Annual Review of Condensed Matter Physics2 101 [16] Goerbig M O, Fuchs J N, Montambaux G and Piéchon F 2008 Phys. Rev. B78 045415 [17] Goerbig M O 2011 Rev. Mod. Phys.83 1193 [18] Andreev A F 1964 Sov. Phys. JETP19 1228 [19] Ludwig T 2007 Phys. Rev. B75 195322 [20] Zhang Q, Fu D, Wang B, Zhang R and Xing D Y 2008 Phys. Rev. Lett.101 047005 [21] Cheng S G, Xing Y, Wang J and Sun Q F 2009 Phys. Rev. Lett.103 167003 [22] Rainis D, Taddei F, Dolcini F, Polini M and Fazio R 2009 Phys. Rev. B79 115131 [23] Cheng S G, Zhang H and Sun Q F 2011 Phys. Rev. B83 235403 [24] Schelter J, Trauzettel B and Recher P 2012 Phys. Rev. Lett.108 106603 [25] Zhai X and Jin G 2014 Phys. Rev. B89 085430 [26] Linder J and Yokoyama T 2014 Phys. Rev. B89 020504 [27] Majidi L, Rostami H and Asgari R 2014 Phys. Rev. B89 045413 [28] Efetov D K, Wang L, Handschin C, Efetov K B, Shuang J, Cava R, Taniguchi T, Watanabe K, Hone J, Dean C R and Kim P 2015 Nat. Phys.12 328 [29] Sahu M R, Raychaudhuri P and Das A 2016 Phys. Rev. B94 235451 [30] Linder J and Yokoyama T 2017 Phys. Rev. B95 144515 [31] Li C X, Wang S K and Wang J 2017 Chin. Phys. B26 027304 [32] Qi F, Cao J, Cao J and Zhang L 2018 Chin. Phys. B27 127401 [33] Soori A, Sahu M R, Das A and Mukerjee S 2018 Phys. Rev. B98 075301 [34] Pandey P, Kraft R, Krupke R, Beckmann D and Danneau R 2019 Phys. Rev. B100 165416 [35] Wang C, Zhang L, Zhang P, Song J and Li Y X 2020 Phys. Rev. B101 045407 [36] Lv B, Zhang C and Ma Z 2012 Phys. Rev. Lett.108 077002 [37] Zhou X 2020 Phys. Rev. B102 045132 [38] Cheng R and Zhou X 2020 Europhys. Lett.130 17004 [39] Xu Y and Zhou X 2021 Results in Physics27 104523 [40] Zhu C Y, Xu W H, Zhou Y L, Ba J Y, Deng M X, Duan H J and Wang R Q 2021 Phys. Rev. B103 075148 [41] Zhou X 2019 Phys. Rev. B100 195139 [42] Lee C, Wei X, Kysar J W and Hone J 2008 Science321 385 [43] Garza H H P, Kievit E W, Schneider G F and Staufer U 2014 Nano Lett.14 4107
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.