Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127301    DOI: 10.1088/1674-1056/ac989e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin transport properties in ferromagnet/superconductor junctions on topological insulator

Hong Li(李红) and Xin-Jian Yang(杨新建)
College of Science, China University of Petroleum, Qingdao 266580, China
Abstract  The spin-dependent Andreev reflection is investigated theoretically by analyzing the electronic transport in a thin-film topological insulator (TI) ferromagnet/superconductor (FM/SC) junction. The tunneling conductance and shot noise are calculated based on the Dirac-Bogoliubov-de Gennes equation and Blonder-Tinkham-Klapwijk theory. It is found that the magnetic gap in ferromagnet can enhance the Andreev retro-reflection but suppress the specular Andreev reflection. The gate potential applied to the electrode on top of superconductor can enhance the two types of reflections. There is a transition between the two types of reflections at which both the tunneling conductance and differential shot noise become zero. These results provide a method to realize and detect experimentally the intra-band specular Andreev reflection in thin film TI-based FM/SC structures.
Keywords:  TI-based FM/SC junctions      magnetic gap effect      Andreev retro-reflection      specular Andreev reflection  
Received:  28 August 2022      Revised:  30 September 2022      Accepted manuscript online:  10 October 2022
PACS:  73.43.Jn (Tunneling)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
Corresponding Authors:  Hong Li     E-mail:  lihong302@upc.edu.cn

Cite this article: 

Hong Li(李红) and Xin-Jian Yang(杨新建) Spin transport properties in ferromagnet/superconductor junctions on topological insulator 2022 Chin. Phys. B 31 127301

[1] Andreev A F 1964 Zh. Eksp. Teor. Fiz. 46 1823
[2] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[3] de Jong M J M and Beenakker C W J 1995 Phys. Rev. Lett. 74 1657
[4] Hsu Y F and Guo G Y 2010 Phys. Rev. B 81 045412
[5] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
[6] Efetov D K, Wang L, Handschin C, Efetov K B, Shuang J, Cava R, Taniguchi T, Watanabe K, Hone J, Dean C R and Kim P 2015 Nat. Phys. 12 328
[7] Bai C, Yang Y and Zhang X 2008 Appl. Phys. Lett. 92 102513
[8] Cheng S G, Xing Y, Wang J and Sun Q F 2009 Phys. Rev. Lett. 103 167003
[9] Zhang Q Y, Fu D Y, Wang B G, Zhang R and Xing D Y 2009 Phys. Rev. Lett. 101 047005
[10] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[11] Rosenberg G, Guo H M and Franz M 2010 Phys. Rev. B 82 041104
[12] Ostrovsky P, Gornyi I and Mirlin A 2010 Phys. Rev. Lett. 105 036803
[13] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[14] Yokoyama T and Tserkovnyak Y 2014 Phys. Rev. B 89 035408
[15] Khezerlou M, Goudarzi H and Asgarifar S 2018 Phys. Lett. A 382 351
[16] Soodchomshom B 2010 Phys. Lett. A 374 3561
[17] Soodchomshom B and Chantngarm P 2010 Physica C 470 1949
[18] Yokoyama T, Tanaka Y and Nagaosa N 2010 Phys. Rev. B 81 121401
[19] Goudarzi H, Khezerlou M and Alilou J 2013 J. Super. Nov. Magn. 26 3355
[20] Goudarzi H, Khezerlou M and Asgarifar S 2017 Physica E 87 155
[21] Majidi L and Asgari R 2016 Phys. Rev. B 93 195404
[22] Islam S F, Dutta P and Saha A 2017 Phys. Rev. B 96 155429
[23] Linder J, Tanaka Y, Yokoyama T, Sudbo A and Nagaosa N 2010 Phys. Rev. Lett. 104 067001
[24] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[25] Blanter Ya M and Büttiker M 2000 Phys. Rep. 336 1
[26] de Jong M J M and Beenakker C W J 1994 Phys. Rev. B 49 16070
[1] Enhancement of subgap conductance in a graphene superconductor junction by valley polarization
Chuan-Xin Li(李传新), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2017, 26(2): 027304.
No Suggested Reading articles found!