Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117406    DOI: 10.1088/1674-1056/24/11/117406
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrochemical synthesis of alkali-intercalated iron selenide superconductors

Shen Shi-Jie (申士杰)a, Ying Tian-Ping (应天平)a, Wang Gang (王刚)a, Jin Shi-Feng (金士锋)a, Zhang Han (张韩)a, Lin Zhi-Ping (林志萍)a, Chen Xiao-Long (陈小龙)a b
a Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Collaborative Innovation Center of Quantum Matter, Beijing, China
Abstract  

Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration.

Keywords:  superconductivity      iron-based superconductor      electrochemical synthesis      intercalation  
Received:  25 June 2015      Revised:  10 October 2015      Accepted manuscript online: 
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  82.45.Aa (Electrochemical synthesis)  
  74.25.-q (Properties of superconductors)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51322211and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100), Beijing Nova Program of China (Grant No. 2011096), and K. C. Wong Education Foundation, Hong Kong, China.

Corresponding Authors:  Wang Gang     E-mail:  gangwang@iphy.ac.cn

Cite this article: 

Shen Shi-Jie (申士杰), Ying Tian-Ping (应天平), Wang Gang (王刚), Jin Shi-Feng (金士锋), Zhang Han (张韩), Lin Zhi-Ping (林志萍), Chen Xiao-Long (陈小龙) Electrochemical synthesis of alkali-intercalated iron selenide superconductors 2015 Chin. Phys. B 24 117406

[1] Ying T P, Chen X L, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H and Wang W Y;2012 Sci. Rep. 2 426
[2] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J;2013 Nat. Mater. 12 15
[3] Ying T P, Wang G, Jin S F, Shen S J, Zhang H, Zhou T T, Lai X F, Wang W Y and Chen X L;2013 Chin. Phys. B 22 087412
[4] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L;2010 Phys. Rev. B 82 180520
[5] Li C H, Shen B, Han F, Zhu X Y and Wen H H;2011 Phys. Rev. B 83 184521
[6] Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q and Fang M H;2011 Europhys. Lett. 93 47004
[7] Ying J J, Wang X F, Luo X G, Wang A F, Zhang M, Yan Y J, Xiang Z J, Liu R H, Cheng P, Ye G J and Chen X H;2011 Phys. Rev. B 83 212502
[8] Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H;2011 Phys. Rev. B 83 060512
[9] Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H and Conder K;2011 J. Phys.-Condens. Mat. 83 052203
[10] Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q;2011 Europhys. Lett. 94 27009
[11] Ma Y C, Yan Q, Zhao J and Lu C M;2013 Chin. Phys. Lett. 30 107401
[12] Yan Q, Lu C M, Feng D W, Yang W W, Zhao J, Liu Q S and Ma Y C;2014 Acta Phys. Sin. 63 037401 (in Chinese)
[13] Krzton-Maziopa A, Pomjakushina E V, Pomjakushin V Y, von Rohr F, Schilling A and Conder K;2012 J. Phys.-Condens. Mat. 24 6
[14] Hatakeda T, Noji T, Kawamata T, Kato M and Koike Y;2013 J. Phys. Soc. Jpn. 82 123705
[15] Noji T, Hatakeda T, Hosono S, Kawamata T, Kato M and Koike Y;2014 Physica C 504 8
[16] Hosono S, Noji T, Hatakeda T, Kawamata T, Kato M and Koike Y;2014 J. Phys. Soc. Jpn. 83 113704
[17] Lu X F, Wang N Z, Zhang G H, Luo X G, Ma Z M, Lei B, Huang F Q and Chen X H;2014 Phys. Rev. B 89 020507
[18] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H;2015 Nat. Mater. 14 325
[19] Lai X F, Zhang H, Wang Y Q, Wang X, Zhang X, Lin J H and Huang F Q;2015 J. Am. Chem. Soc. 137 10148
[20] Fujiwara M, Nakanishi M, Kusano Y, Fujii T, Takada J, Takeda Y and Ikeda Y;1997 Physica C 279 219
[21] Nagai I, Abe Y, Kato M, Koike Y and Kakihana M 2001 Physica C 357 393
[22] Nagai I, Abe Y, Kato M, Koike Y and Kakihana A;2002 Solid State Ion. 151 265
[23] Kriener M, Segawa K, Ren Z, Sasaki S, Wada S, Kuwabata S and Ando Y;2011 Phys. Rev. B 84 054513
[24] Kato M, Inoue A, Nagai I, Kakihana M, Sleight A W and Koike Y 2003 Physica C 388 445
[25] Tezuka H, Kato M, Noji T, Yamanaka S and Koike Y;2010 Jpn. J. Appl. Phys. 49 020210
[26] de Dompablo M, Moran E, Alario-Franco M A, Drymiotis F, Bianchi A D and Fisk Z;2000 Int. J. Inorg. Mater. 2 581
[27] Kajita T, Kato M, Suzuki T, Itoh T, Noji T and Koike Y 2005 Physica C 426 500
[28] Abe H, Noji T, Kato M and Koike Y;2010 Physica C 470 S487
[29] Chen D, Wang X S, Chen J T, Ren Z A, Xue M Q and Chen G F;2015 Adv. Mater. 27 4224
[30] McQueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P and Cava R J;2009 Phys. Rev. B 79 014522
[31] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K;2008 Proc. Natl. Acad. Sci. USA 105 14262
[32] Ying T P, Chen X L, Wang G, Jin S F, Lai X F, Zhou T T, Zhang H, Shen S J and Wang W Y;2013 J. Am. Chem. Soc. 135 2951
[33] Zheng L, Miao X, Sakai Y, Izumi M, Goto H, Nishiyama S, Uesugi E, Kasahara Y, Iwasa Y and Kubozono Y;2015 Sci. Rep. 5 8
[34] Guo J G, Lei H C, Hayashi F and Hosono H;2014 Nat. Commun. 5 4756
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[7] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[8] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[13] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[14] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[15] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
No Suggested Reading articles found!