Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107102    DOI: 10.1088/1674-1056/24/10/107102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nano LaAlO3 buffer layer-assisted tunneling current in manganite p-n heterojunction

Ma Jun-Jie (马俊杰)a, Wang Deng-Jing (王登京)a b, Huang Hai-Lin (黄海林)a, Wang Ru-Wu (汪汝武)b, Li Yun-Bao (李云宝)a
a Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 430081, China;
b Hubei Provincial Key Laboratory of System Science in Metallurgical Process, Wuhan 430065, China
Abstract  An oxide p-n heterojunction composed of a 150-nm La0.67Ca0.33MnO3 (LCMO) film, 0.05 wt% Nb doped SrTiO3 substrate (STON), and sandwiched 5-nm LaAlO3 (LAO) thin film is fabricated with the pulsed laser deposition technique and the interfacial transport properties are experimentally studied. The rectifying behavior of the junction is in agreement with Newman's equation, indicating that tunneling is the dominant process for the carriers to pass through the interface while thermal emission is the dominant transport model of an LCMO/STON heterojunction with no LAO buffer layer.
Keywords:  manganite      heterojunction      tunneling  
Received:  23 April 2015      Revised:  18 May 2015      Accepted manuscript online: 
PACS:  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Gk (Tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10804089).
Corresponding Authors:  Wang Deng-Jing     E-mail:  d.j.wang@163.com

Cite this article: 

Ma Jun-Jie (马俊杰), Wang Deng-Jing (王登京), Huang Hai-Lin (黄海林), Wang Ru-Wu (汪汝武), Li Yun-Bao (李云宝) Nano LaAlO3 buffer layer-assisted tunneling current in manganite p-n heterojunction 2015 Chin. Phys. B 24 107102

[1] Sugiura M, Uragou K, Noda M, Tachiki M and Kobayashi T 1999 Jpn. J. Appl. Phys. Part 1 38 2675
[2] Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H and Tokura Y 2004 Science 305 646
[3] Sun J R, Shen B G, Sheng Z G and Sun Y P 2004 Appl. Phys. Lett. 85 3375
[4] Yajima T, Hikita Y and Hwang H Y 2011 Nat. Mater. 10 198
[5] Wang M, Wang D J, Wang R W and Li Y B 2013 Solid State Commun. 170 10
[6] Nakagawa N, Asai M, Mukunoki Y, Susaki T and Hwang H Y 2005 Appl. Phys. Lett. 86 082504
[7] Ziese M, Setzer A, Vrejoiu I, Birajdar B I, Rodriguez B J and Hesse D 2008 J. Appl. Phys. 104 063908
[8] Sheng Z G, Zhao B C, Song W H, Sun Y P, Sun J R and Shen B G 2005 Appl. Phys. Lett. 87 242501
[9] Liang S, Sun J R, Wang J and Shen B G 2009 Appl. Phys. Lett. 95 182509
[10] Wang D J, Sun J R, Xie Y W, Lü W M, Liang S, Zhao T Y and Shen B G 2007 Appl. Phys. Lett. 91 062503
[11] Lü W M, Sun J R, Chen Y Z, Shang D S and Shen B G 2009 Appl. Phys. Lett. 95 232514
[12] Xie Y W, Sun J R, Wang D J, Liang S, Lü W M and Shen B G 2007 Appl. Phys. Lett. 90 192903
[13] Cuellar F A, Sanchez-Santolino G, Varela M, Clement M, Iborra E, Sefrioui Z, Santamaria J and Leon C 2012 Phys. Rev. B 85 245122
[14] Wang D J, Xie Y W, Xiong C M, Shen B G and Sun J R 2006 Europhys. Lett. 73 401
[15] Sze S M 1981 Physics of Semiconductor Devices, 2nd ed. (Wiley: New York)
[16] Newman P C 1965 Electron. Lett. 1 265
[17] Wang D J, Sun J R, Xie Y W, Li Y B, Zhang L G, Wang R W and Shen B G 2010 Appl. Phys. Lett. 97 192503
[18] Sawa A, Fujii T, Kawasaki M and Tokura Y 2005 Appl. Phys. Lett. 86 112508
[19] Padovani F A and Stratton R 1966 Solid State Electron. 9 695
[20] Wei A D, Sun J R, Lü W M and Shen B G 2009 Appl. Phys. Lett. 95 052502
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[4] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[5] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[6] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[7] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[8] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[9] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[10] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[11] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[12] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[13] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[14] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[15] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
No Suggested Reading articles found!