Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017302    DOI: 10.1088/1674-1056/ac6daf
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement

Jiu-Huan Chen(陈九环)1 and Xin-Lu Cheng(程新路)1,2,†
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  The unique plasmon resonance characteristics of nanostructures based on metal clusters have always been the focus of various plasmon devices and different applications. In this work, the plasmon resonance phenomena of polyhedral silver clusters under the adsorption of NH3, N2, H2, and CH4 molecules are studied by using time-dependent density functional theory. Under the adsorption of NH3, the tunneling current of silver clusters changes significantly due to the charge transfer from NH3 to silver clusters. However, the effects of N2, H2, and CH4 adsorption on the tunneling current of silver clusters are negligible. Our results indicate that these silver clusters exhibit excellent selectivities and sensitivities for NH3 detection. These findings confirm that the silver cluster is a promising NH3 sensor and provide a new method for designing high-performance sensors in the future.
Keywords:  ammonia      Ag clusters      plasmon      tunneling current spectrum  
Received:  06 March 2022      Revised:  27 April 2022      Accepted manuscript online:  07 May 2022
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774248 and 11974253) and the National Key Research and Development Program of China (Grant No. 2017YFA0303600).
Corresponding Authors:  Xin-Lu Cheng     E-mail:  chengxl@scu.edu.cn

Cite this article: 

Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路) Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement 2023 Chin. Phys. B 32 017302

[1] Wei W, Li W and Wang L 2018 Sensors and Actuators B: Chemical 263 502
[2] Li P, Wang B, Qin C, Han C, Sun L and Wang Y 2020 Ceramics International 46 19232
[3] Järvinen T, Lorite G S, Peräntie J, Toth G, Saarakkala S, Virtanen V K and Kordas K 2019 Nanotechnology 30 405501
[4] Faye O, Eduok U and Szpunar J A 2019 J. Phys. Chem. C 123 29513
[5] Yong Y, Cui H, Zhou Q, Su X, Kuang Y and Li X 2019 Appl. Surf. Sci. 487 488
[6] Kumar V and Roy D R 2019 Physica E 110 100
[7] Li R, Jiang K, Chen S, Lou Z, Huang T, Chen D and Shen G 2017 RSC Adv. 7 52503
[8] Ali I, Kashyout A E-H B, Tayel M, Shokry Hassan H and Rizk M 2020 J. of Mater. Res. Technol. 9 15693
[9] Yong Y, Zhou Q, Su X, Kuang Y, Catlow C R A and Li X 2019 Journal of Molecular Liquids 289 111153
[10] Liu Y, Shi T T, Chen T, He W J, Chen M M and Cao D 2019 Sensors and Actuators B: Chemical 281 789
[11] Yong Y, Li C, Li X, Li T, Cui H and Lv S 2015 J. Phys. Chem. C 119 7534
[12] Yong Y, Li X, Zhou Q, Su X, Li T, Cui H and Lv S 2016 RSC Adv. 6 26809
[13] Chen H, Chen Z, Yang H, Wen L, Yi Z, Zhou Z, Dai B, Zhang J, Wu X and Wu P 2022 RSC Adv. 12 7821
[14] Zhao F, Lin J, Lei Z, Yi Z, Qin F, Zhang J, Liu L, Wu X, Yang W and Wu P 2022 Phys. Chem. Chem. Phys. 24 4871
[15] Jiang L, Yi Y, Tang Y, Li Z, Yi Z, Liu L, Chen X, Jian R, Wu P and Yan P 2022 Chin. Phys. B 31 038101
[16] Huang Y, Fang Y, Zhang Z, Zhu L and Sun M 2014 Light: Science & Applications 3 e199
[17] Brolo A G, Gordon R, Leathem B and Kavanagh K L 2004 Langmuir 20 4813
[18] Huang H, Wang B, Long H, Wang K and Lu P 2014 Opt. Lett. 39 5957
[19] Tian X, Sun S, Leong E S P, Zhu G, Teng J, Zhang B, Fang Y, Ni W and Zhang C Y 2020 Phys. Chem. Chem. Phys. 22 3604
[20] Lim W Q and Gao Z 2016 Nano Today 11 168
[21] Zhang Z, Zhang C, Zheng H and Xu H 2019 Acc. Chem. Res. 52 2506
[22] Farokhnezhad M and Esmaeilzadeh M 2019 Phys. Chem. Chem. Phys. 21 18352
[23] Shahriar Sabuktagin M and Syifa Hamdan K 2020 Royal Society Open Science 7 191926
[24] Tao A, Sinsermsuksakul P and Yang P 2006 Angew. Chem. Int. Ed. 45 4597
[25] Millstone J E, Park S, Shuford K L, Qin L, Schatz G C and Mirkin C A 2005 J. Am. Chem. Soc. 127 5312
[26] Yu C, Schira R, Brune H, von Issendorff B, Rabilloud F and Harbich W 2018 Nanoscale 10 20821
[27] Kazuma E, Jung J, Ueba H, Trenary M and Kim Y 2018 Science 360 521
[28] Li M T, Liu M and Sun H B 2019 Phys. Chem. Chem. Phys. 21 24262
[29] Yan L, Guan M and Meng S 2018 Nanoscale 10 8600
[30] Shinde R and Singh A K 2018 J. Phys. Chem. C 122 19146
[31] Zhang Y, Meng W, Chen D, Zhang L, Li S and Meng S 2022 Nano Research 15 3894
[32] Zhang Y, Chen D, Meng W, Xu Z, Guo H, Li S and Meng S 2021 J. Phys. Chem. C 125 26348
[33] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U and Rubio A 2006 Phys. Status Solidi (b) 243 2465
[34] Ceperley D and Alder B 1980 Phys. Rev. Lett. 45 567
[35] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[36] Xiong R, Die D, Xu Y G, Zheng B X and Fu Y C 2018 Phys. Chem. Chem. Phys. 20 15824
[37] McKee M L and Samokhvalov A 2017 J. Phys. Chem. A 121 5018
[38] Jiang Y Q, Peng P, Wen D D, Han S C and Hou Z Y 2015 Comput. Mater. Sci. 99 156
[39] Jin R 2010 Nanoscale 2 343
[40] Haifeng Y and Chunhua Z 2014 Chin. J. Comput. Phys. 31 713
[41] Kooij E S, Ahmed W, Zandvliet H J W and Poelsema B 2011 J. Phys. Chem. C 115 10321
[42] Mokkath J H and Henzie J 2020 Phys. Chem. Chem. Phys. 22 1416
[43] Zhang K, Zhang H and Cheng X 2016 Chin. Phys. B 25 037104
[44] Jin R, Zeng C, Zhou M and Chen Y 2016 Chem. Rev. 116 10346
[45] Qin Z, Zhang J, Wan C, Liu S, Abroshan H, Jin R and Li G 2020 Nat. Commun. 11 6019
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[3] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[7] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[12] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[13] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[14] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[15] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
No Suggested Reading articles found!